THE PTTG1 IS A NOVEL INHIBITOR OF OSTEGENIC DIFFERENTIATION OF MOUSE MESENCHYMAL STEM CELLS

V. I. Krupak,1 Kh. V. Malysheva,1,2 H. O. Pavlenko,3 G. I. Shafranska,1 K. de Rooij4, C. W. G. M. Löwik4, R. S. Stoika,1 O. G. Korchynskyy1,4
olexkor@hotmail.com

1Institute of Cell Biology NAS, 14/16 Drahomanov str., Lviv 79005, Ukraine
2Institute of Animal Biology NAAS, 38 V. Stus str., Lviv 79034, Ukraine
3Ivan Franko National University of Lviv, 4 Grushevskyy Str., Lviv 79005, Ukraine
4Leiden University Medical Center, 2 Albinusdreef, ZA Leiden 2333, The Netherlands

Rheumatoid arthritis (RA) is a severe autoimmune inflammatory disease leading to chronic pain in the joints frequently ending in patient disability and even death. Molecular mechanisms that trigger a disease and exacerbate its progression are still poorly understood. Several signaling pathways are strongly misregulated in different cell types in joints of RA patients.

It is well known that bone morphogenetic protein (BMP) and Wnt pathway are key signaling pathways that induce and support cartilage and bone formation and maintenance. We hypothesized that pituitary tumors transforming gene 1 (PTTG1) and its partner protein — PTTG binding protein 1 (PTTG-BP1, also called PBF1: PTTG binding factor 1) — presents a novel key system in regulating homeostasis of joint tissues and RA pathogenesis. According to our preliminary data, overexpression of PTTG1 gene leads to a drastic inhibition of Wnt signaling in target cells. Such result suggests that PTTG1/PTTG-BP1 axis serve as a new negative regulator of bone and potentially cartilage homeostasis.

In this work, we have investigated the effect of PTTG1 gene overexpression on activation of BMP and Wnt signaling pathways. We have found that ectopic expression of PTTG1 gene inhibited hBMP2/7-induced osteogenic differentiation of C2C12 cells and bone matrix mineralization in KS483 cells. At the same time shRNA-mediated knockdown of mRNA PTTG1 gene leads to a substantial activation of bone formation in these cells. Thus, PTTG1 is an important repressor of osteogenesis, and it may be involved in skeletal tissue destruction caused by the inflammatory processes.

Keywords: RHEUMATOID ARTHRITIS, PITUITARY TUMORS TRANSFORMING GENE 1, OSTEGENESIS, MESENCHYMAL STEM CELLS, WNT SIGNALING PATHWAY
Ревматоїдний артрит (РА) — важке аутоімунне запальне захворювання, яке призводить до хро­
нічного болю у суглобах і часто закінчується інвалідністю і навіть смертю пацієнтів. Молекулярні
механізми, які викликають цю хворобу, є малоістотними. У па­
цієнтів з РА виявлені порушення деяких регуляторних шляхів у різних типах клітин суглобів.

Відомо, що морфогенетичні білки кістки (МБК) і сигналний ланцюг Wnt є ключовими сигналь­
ними шляхами, які індукують та підтримують формування хрящової і кісткової тканин. Ми припус­
каємо, що ген пухлинної трансформації клітин гіпофізу 1 (PTTG1) та PTTG1 зв’язувальний білок 1
(PTTG-BP1; також має назву PBF1: PTTG binding factor 1) є новою важливою системою у регуляції
гомеостазу тканей суглобів і патогенезу РА. Згідно з нашими попередніми даними, надекспресія гену
PTTG1 приводить до значного гальмування регуляторних сигналів Wnt в клітинах-мишенях. Такий ре­
зультат дозволяє припустити, що система PTTG1/PTTG-BP1 виконує функцію нового негативного регу­
лятора гомеостазу кісткової та, вірогідно, хрящової тканин.

У цій роботі було досліджено вплив надекспресії гену PTTG1 на активацію сигналних шляхів
BMP і Wnt. Встановлено, що тимчасова експресія гену PTTG1 підсилює hBMP2/7-індуковану остеогенну
dиференціацію клітин лінії C2C12 та мінералізацію кісткового матриксу клітинами лінії KS483. У той
же час shRNA-опосередковану нуклеарну експресію mРНК гену PTTG1 призводить до значної активації
остеогенної диференціації цих клітин. Отже, PTTG1 є важливим транскрипційним репрессором остео­
генезу і, можливо, задійсняє у руйнуванні кісткової тканини, спричиненому запальним процесом.

Ключові слова: РЕВМАТОЇДНИЙ АРТРИТ, ГЕН ПУХЛИНОЇ ТРАНСФОРМАЦІЇ КЛІ­
ТИН ГІПОФІЗУ 1, ОСТЕОГЕНЕЗ, МЕЗЕНХІМНІ СТОВБУРОВІ КЛІТИНИ, СИГНАЛЬНИЙ
ШЛЯХ WNT

PTTG1 — НОВЫЙ ИНГИБИТОР ОСТЕОГЕННОЙ ДИФФЕРЕНЦИРОВКИ
МЯШИНЫХ МЕЗЕНХИМАЛЬНЫХ СТВОЛОВЫХ КЛЕТОК

В. И. Крупп#1, Х. В. Малышево1,2#, О. К. Павленко3, Г. И. Шафранская1, К. де Роий4,
К. В. Г. М. Левик4, Р. С. Стоїйка1, О. Г. Корчинский1,4
olexkor@hotmail.com

— эти авторы имет равный вклад в выполнение работы

Ревматоїдний артрит (РА) — тяжелое аутоіммунное воспалительное заболевание, которое
приводит к хронической боли в суставах и часто заканчивается инвалидностью и даже гибелью паци­
ентов. Точные молекулярные механизмы, которые вызывают болезнь и усиливают ее развитие, оста­
ются малоизученными. У пациентов с РА выявлены нарушения некоторых сигнальных путей в различ­
ных тканях суставов.

Известно, что морфогенетические белки кости и сигналная цепь Wnt являются ключевыми
сигнальными путями, которые индуцируют и поддерживают формирование хрящевой и костной тка­
ней. Мы предполагаем, что ген опухолевой трансформации клеток гипофиза 1 (PTTG1) и РТТG1 связываю­
ций белок 1 (PTTG-BP1; также имеет название PBF1: PTTG binding factor 1) является новой важной
системой в регуляции гомеостаза тканей суставов и патогенеза РА. Согласно нашим предваритель­
ным данным, сверхэкспрессия гена PTTG1 приводит к значительному торможению сигналов Wnt в клетках-
мишенях. Такой результат позволяет предположить, что система PTTG1/PTTG-BP1 выполняет функ­
кцию нового негативного регулятора гомеостаза костной и, вероятно, хрящевой тканей.

В данной работе мы исследовали влияние сверхэкспрессии гена PTTG1 на активацию сигналных
пути BMP и Wnt. Мы обнаружили, что временная сверхэкспрессия гена PTTG1 индуцирует hBMP2/7-
индуктированную остеогенную дифференцировку клеток линии C2C12 и мінералізацію кісткового мат­
RA is a highly morbid autoimmune disorder that debilitates the life of patients due to a progressive irreversible destruction of cartilage and bone in the joint leading to joint swelling, pain, and stiffness. During RA development, synovial fibroblast-like cells (FLS) start to overgrow and invade surrounding tissues in the joint, thus forming a pannus that leads to a severe destruction of the articular cartilage and frequently to bone erosions. Although RA has been a subject of innumerable investigations, the main cause of the disease stays unknown, and the etiology and pathogenesis of the disease remain incompletely understood [15]. Strikingly, several signaling pathways are strongly misregulated in FLS, monocytes, neutrophils, endothelial and other cells in joints of the RA patients. The bone morphogenetic protein (BMP) and Wnt pathway are known to be key signaling players that induce and support cartilage and bone formation and maintenance.

Recent studies of human rheumatic and orthopedic diseases and specific mouse models with both activating and null mutations of proteins required for a canonical Wnt signaling suggest a crucial role of this signaling pathway in the regulation of bone formation, maintenance, reparation and remodeling by regulating osteoblast and osteoclast proliferation and differentiation [4, 5, 6]. Osteoblast differentiation is predominantly supported by the BMPs — the members of the transforming growth factor β (TGFβ) superfamily and by Wnt proteins. Although BMPs are initial inducers of osteogenesis, efficient differentiation of mesenchymal precursors to the osteo- and chondrogenic lineages requires both Wnt and BMP signaling, and the canonical Wnt pathway subsequently acts as the master regulator of osteogenesis [13].

Wnt/β-catenin signaling modulates osteogenesis through multiple mechanisms. Wnts repress alternative mesenchymal differentiation pathways, such as adipocyte and chondrocyte differentiation, and promote osteoblast differentiation, proliferation, and mineralization activity, while blocking osteoblast apoptosis. By increasing a ratio of OPG/RANKL (osteoprotegerin/receptor activating NF-κB ligand), β-catenin represses osteoclastogenesis [12]. In a healthy skeleton, adjacent to joints cortical bones’ formation and resorption are well balanced; however, the inflammatory arthritis leads to an imbalance between these processes. Bone formation is hampered by tumor necrosis factor α (TNFα)-mediated expression of inhibitors which suppress Wnt signals, whereas bone resorption is enhanced by the expression of RANKL [1] — a key factor for the osteoclast differentiation and activation.

In terms of commitment and differentiation of the mesenchymal stem cells (MSC), there is a cooperative crosstalk between the Wnt and BMP pathways [17]. BMP signaling is crucial for skeletogenesis and homeostasis through both development and adulthood. A crosstalk between the BMP and Wnt signaling is notoriously complex in all tissues, as it can be either synergistic or antagonistic, depending on cellular context, and bone is not an exception of this rule. In line with the complexity of their crosstalk, BMP and Wnt signaling were shown to have opposing effects in osteo-progenitors, yet they seem to function, for the most part, cooperatively in the osteoblasts.

Although a crucial role for canonical Wnt signaling has been well established, many mechanisms remain to be discovered in respect to their fine tuning and crosstalk with other pathways in bone [1].

Here we identified PTTG1/Securin and PTTG-BP1/PBF1 as important new molecules that regulate the process of bone formation and maintenance.
PTTG gene is a proto-oncogene, first identified in 1997 in rat pituitary GH4 cells [16]. Human PTTG1 gene is located on chromosome 5 and encodes securin — a protein consisting of 202 amino acids (22 kDa) with no significant homology to other known proteins [19]. Securin is critically important in regulation of chromosome separation during a mitotic step called the anaphase [22]. PTTG1 gene is abundantly expressed in cells of malignant tumor, as well as of some normal tissues, and potently transforms cells both in vitro and in vivo. Overexpression of PTTG1 gene in NIH-3T3 cells increases basic fibroblast growth factor (FGF) mRNA level as well as stimulates its secretion. As a trans-activator of growth factors, high PTTG1 gene expression also induces vascular endothelial growth factor (VEGF) and other proangiogenic genes [19]. Strikingly, targeted inactivation of PTTG1 gene leads to generation of aneuploid cells. Like any other oncogene, PTTG1 gene has important normal physiological functions that were revealed by deleting the PTTG1 gene in mice. Mice lacking PTTG1 gene show testicular and splenic hypoplasia, thymic hyperplasia, thymocyte, aberrant cell cycle progression, and premature centromere division [19, 21].

In addition, recent studies showed that PTTG-BP1/PBF1 expression was reduced in long standing RA comparably to early RA [14]. At the same time, PTTG-BP1/PBF1 is a target gene for osteoblast-specific transcriptional factor RUNX2 [18]. Thus, these data allow to hypothesize that PTTG1/PTTG-BP1 axis represents a novel key system in regulating homeostasis of joint tissues with involvement into pathogenesis of osteoporosis and RA progression.

According to our preliminary data, PTTG1 overexpression leads to a drastic inhibition of Wnt signaling in target cells. Such result suggests that PTTG/PTTG-BP1 axis can serve as a new negative regulator of bone and potentially cartilage homeostasis. In this work, we investigated the effect of PTTG1 gene overexpression on the activation of BMP and Wnt signaling pathways.

Materials and methods

Cell culture and ligands. Our studies were performed with mouse mesenchymal precursor cells of C2C12 and KS483 lines cultured in Dulbecco’s modified Eagle’s medium (DMEM, Sigma) containing 10% fetal calf serum (FCS, Sigma). Cells were grown in a 5% CO₂-containing atmosphere at 37°C. Upon transient transfection, cells were grown in DMEM supplemented with 4% FCS and 16 hours later they were transferred to fresh DMEM with 10% FCS and addition of appropriate ligands or recombinant adenoviral vectors expressing BMP2 and BMP7 to induce osteoblast differentiation. In particular, C2C12 cells in appropriate variants were treated with 10 ng/ml of recombinant TNFα purchased from R&D Systems (Minneapolis, MN, USA).

Short (small) hairpin RNA (shRNA). shRNA-expressing constructs are frequently used as a convenient substitution for siRNA specifically targeting gene expression that allows to avoid initial side effects of transfection required for siRNA delivery to the cells. The set of validated shRNA lentiviral constructs that specifically target the expression of mouse versions of PTTG1 and PTTG-BP1 mRNAs was purchased as a part of MISSION library from Sigma-Aldrich (St. Louis, MS, USA).

Transient transfection. C2C12 and KS483 cells were split at a density of 1.5×10⁴ cells per cm² in 12-well plates. Next day, cells were transiently transfected with plasmid constructs expressing shRNA targeting PTTG1 and PTTG-BP1 mRNA or control scrambled shRNA (0.5 µg of total DNA per well). Transfection was carried out using GeneJuice transfection reagent (Merck Millipore, USA) following manufacturer’s protocol. An efficacy of shRNA-mediated knockdown was confirmed with quantitative PCR and varied from 6.5 to 8 times for most efficient variants (data not shown).

Induction of osteoblast differentiation. C2C12 and KS483 cell lines can be induced to differentiate into osteoblasts by different BMPs, including BMP2 and BMP7. 24 hours after a transient transfection, these cells lines were transduced with a combination of adenoviral
constructs encoding recombinant hBMP2 and hBMP7 at the multiplicity of infection (MOI) even to 500 for each one construct [10] to induce a production of hBMP2/hBMP7 heterodimers along with appropriate homodimers. During osteogenesis assay, C2C12 and KS483 cells were cultured in a differentiation-supporting medium supplemented with 50 μg/ml ascorbic acid for 4 and 10 days, respectively. Starting from day 10 upon induction of osteogenesis KS483 cells cultures were additionally supplemented with 5 mM β-glycerophosphate for next 8 days, totaling in 18 days.

Alkaline phosphatase assay. The alkaline phosphatase activity produced by C2C12 was analyzed spectrophotometrically using a π-nitrophenylphosphate (π-NPP) as a substrate [20]. At day 7 of culturing, the supernatants were withdrawn and cells were washed twice with 0.4 ml of 1X phosphate-buffered saline (PBS) per well. The cells were lysed in 0.2 ml of alkaline phosphatase (ALP) lysis buffer (10 mM glycine, 100 μM MgCl₂, 10 μM ZnCl₂, 0.1 % Triton X-100) per well and gently agitated for 5 min. Then, 10 µl of cell lysate and 90 µl of Triton X-100) per well and gently agitated for 5 min. Then, 10 µl of cell lysate and 90 µl of ALP assay buffer (100 mM glycine, 1 mM MgCl₂, 100 μM ZnCl₂) supplemented with 6 mM π-NPP (Pierce-Thermo Fisher Scientific, Grand Island, NY, USA) [20], were mixed gently and incubated at room temperature until color developed. The optical density was measured at 405 nm (OD₄₀₅) in 96-well plate reader (BioTek, Winooski, VT, USA). Data were presented as a “Fold induction versus Control” — magnitudes of changes in times obtained after dividing of a value in each variant on a mean value in untreated control variant.

Alizarin staining. Histochemical examination of mineral deposition by KS483 cells was performed using conventional staining with Alizarin Red (Sigma-Aldrich, St. Louis, MS, USA) [20]. Cellular monolayers were washed with 1X PBS (0.4 ml/well) and fixed in 10 % (v/v) formaldehyde at room temperature for 5 min. Then, the monolayers were washed with dH₂O prior to addition of 0.4 ml of 2 % Alizarin Red S solution (pH 5.5) per well. The plate was incubated at room temperature for 2–5 min with gentle agitation. After aspiration of the unincorporated dye, the wells were washed twice with 0.4 ml of dH₂O per well and once with 3 ml of dH₂O per well while shaking for 5 and 20 min, respectively. The monolayers were then stored in 1 ml of 1X PBS and scanned. Representative wells were showed.

Statistical analysis. Statistical differences were analyzed by Student’s t-test.

Results and discussion

We have investigated the effect of PTTG1 gene overexpression on activation of BMP and Wnt signaling pathways. For transient overexpression of PTTG1 and PTTG-BP1/PBF1 genes, C2C12 cells were transduced with appropriate plasmids (Fig. 1A). These cells were also transiently transfected with shRNA plasmids that specifically target the expression of PTTG1 and PTTG-BP1/PBF1 mRNAs versus scrambled shRNA expressing plasmid that was used as a control (Fig. 1B).

ALP is a widely used marker of early stages in osteoblast differentiation [3, 7, 9], and we successfully used it in our preliminary studies. Treatment of C2C12 cells with TNFα completely inhibits their myoblast differentiation, as well as strongly inhibits BMP-induced osteogenesis (data not shown).

We found that the ectopic expression of PTTG1 gene inhibits osteogenic differentiation in C2C12 cell line. At the same time, shRNA-mediated knockdown of PTTG1 mRNA led to a substantial increase of bone formation in these cells.

However, ALP cannot be used as a marker of late stages of osteoblast differentiation for which the bone mineral deposition and nodules formation are specific. According to literature and our preliminary data (not shown), Wnt pathway is activated during late stages of osteoblast differentiation [11]. Unfortunately, C2C12 cells cannot undergo late stages of the osteoblast differentiation. Therefore, in the next experiments KS483 cells that can efficiently follow late stages of osteogenesis were used [20].

For transient overexpression of PTTG1 and PTTG-BP1/PBF1 genes, KS483 cell line were co-transduced with plasmids encoding appropriate proteins (Fig. 2A). It was shown that
the ectopic expression of PTTG1 gene inhibits activation of the Wnt signaling pathway in KS483 cells, which results in inhibition of BMP-induced bone matrix mineralization.

KS483 cells were also transiently transfected with shRNA plasmids that specifically target the expression of PTTG1 and PTTG-BP1/PBF1 mRNAs. As shown on a Fig. 2B, a treatment of KS483 cells with hBMP2/7 strongly intensified their late osteoblast differentiation and overexpression of shRNA constructs targeting mRNAs of PTTG1, PTTG-BP1/PBF1 genes or their combination further potentiated osteoblast differentiation observed through nodules formation and matrix mineralization when compared with a control.

However, we were not able to combine hBMP2/hBMP7 treatment with TNFα due to massive cells death induced in KS483 cells by TNFα (data not shown). Similar effect was also observed by other investigators using different (pre)osteoblastic cell lines [2, 8].

In this study we showed that PTTG1 gene is an important repressor of osteogenesis and can serve as an inhibitor of bone remodeling. Thus, Wnt pathway inhibition by PTTG1/Securin, for the first time may explain the phenotypic manifestations occurring due to PTTG1 gene targeted inactivation (knockout). The mechanism described in this article could also be involved in maturation of the male reproductive system and be responsible for some forms of male infertility.

Thus, we revealed novel molecular mechanisms and functional impact of negative regulation of Wnt signaling pathway by PTTG1 gene product. They are crucially important for proper understanding of the molecular basis of pathogenesis and progression of RA and osteoporosis. Besides that, knowing these mechanisms...
Fig. 2. Ectopic expression of PTTG1 and PTTG-BP1/PBF1 mixture (A) and shRNA-mediated knockdown of PTTG1 and PTTG-BP1/PBF1 mRNAs (B) leads to inhibition (A) and activation (B) of hBMP2/7-induced osteogenesis in KS483 cell line, correspondingly.

KS483 cells were co-transduced with plasmids encoding PTTG1 and PTTG-BP1/PBF1 genes (A) or with indicated shRNA plasmids (B). Osteogenesis was induced with a mixture of recombinant BMP2 and BMP7 adeno-viruses (1:1). Cells were fixed and stained with Alizarin Red. Representative fields (1x) are shown.

Perspectives for further research. We will validate the biological significance of our results using experimental models of PTTG knockout mice.

Acknowledgments

This work was partly supported by Young Scientist Carrier Support grant from the West-Ukrainian BioMedical Research Center (WUBM-RC), and by the Molecular & Cellular Biotechnologies Grant of the National Academy of Sciences of Ukraine (Project No 37).

