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Rheumatoid arthritis (RA) is a chronic inflammatory disorder characterized by massive joint destruction.
Bone erosion belongs to the most painful consequences of RA that are tightly associated with disease severity and
poor functional outcome. It is well known that bone morphogenetic protein (BMP) and Wnt regulatory pathways
are involved in cartilage and bone formation and maintenance. We hypothesize that pituitary tumor transforming
gene 1 (PTTG1)/(PTTG)-binding factor 1 (PBF'1) axis serves as a new negative regulator of bone homeostasis
with involvement into RA progression and pathogenesis.

The aim of this study was to investigate the effect of small hairpin (sh) RNA-mediated knockdown of
PTTG1 mRNA expression on the early stages of BMP-induced osteoblast differentiation. Analysis of the experi-
ment results was performed by spectrophotometric measurement of alkaline phosphatase activity, which is widely
used as a marker of early osteogenesis.

We have found that shRNA-mediated knockdown of PTTGI1 mRNA expression potentiated early stages
of osteoblast differentiaion in stable multi-clonal cultures of C2C12 and KS483 cell lines. The most pronounced
effect was found at the action of anti-PTTG1_shRNA-1 whose stable expression stimulated osteoblast differentia-
tion of C2C12 and KS483 cells (2.1 fold and 2.7 fold, respectively), whereas anti-PTTG1_shRNA-3 stable expres-
sion did not show any significant effect on the osteoblast differentiation of these cells. Thus, we demonstrated that
PTTG]1 is an important repressor of early stages of osteogenesis and can serve as an inhibitor of bone remodel-
ling, in particular, during RA progression.

Keywords: PITUITARY TUMOR TRANSFORMING GENE 1, SMALL HAIRPIN RNAs,
OSTEOBLAST DIFFERENTIATION, MURINE MESENCHYMAL STEM CELLS, BONE MOR-
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Pesevamoionuii apmpum (PA) — ye xponiune 3ananvHe 3ax60pro8anHs, ke XapaKmepu3yemvcsa MacUuHUM
PYUHYBAHHAM MKAHUH cYeno0is. Epo3is KicmKkoeol mKaHuHu Hanexcums 00 Haubiibu bomoqux Hacnioxie PA i aco-
YIt0EMBCAL 3 BANCKICIIO 30X80PIOBAHHS | HECNPUAMMUBUM YHKYIOHANLHUM pe3yibmamom. Bidomo, wo mopgoze-
nemuyni npomeinu kicmxu (MIIK) i cuenanonuii nanyioe Wnt nanexcams 00 KiOUOBUX pe2YISIMOPHUX WLSXIG, SKI
IHOYKYIOmMb [ NIOMPUMYIOMb (POPMYEAHHS XPAUWO060T ma Kicmkogoi mxkanut. Mu npunyckaemo, wjo 2en nyxXauHHol
mparncgopmayii knimun einogizy 1 (PTTGI1) ma PTTGI-36 si3yéanvhuii npomein 1 (PBF1) € eaxciueoro cucmemoro,
KA BUKOHYE (DYHKYIIO HOBO2O HE2AMUBHO20 Pe2YISIMOPA 20MEOCMA3y KICMK0BOT MKAHUHY, I, IMOGIPHO, 3A0IsHA
y namoeene3si PA.

Memoro yvboco docaidcenms 6yno gusuumu enius Hokoaymy excnpecii MPHK eeny PTTG1, onocepeo-
Koeano2o manumu wnuiskosumu (mut) PHK, na panni cmaoii MIIK-indyxosanoi ocmeobnacmmuoi ougepenyiayii.
Ananiz pe3yniomamie eKCnepumeHmis npogooUIU Memooom CHeKmpoghomomempii uepes UMIPIOBAHHS AKIMUBHOCT
JYoHCHOT hocghamasu sk maprepa panHix cmaditi ocmeozenes).

Tokaszano, wo bnoxysanus excnpecii MPHK ceny PTTG 1, onocepeokosane muPHK, nocuniosano pamnni
cmadii ocmeobnacmmoi ougepenyiayii' y cmabiibHux MyIbmukIoHatbHux Kynomypax kiaimun ainin C2C12 i KS483.
Haiibinow supasicenuii echexm susgnero o anmu-PTTG1 muPHK-1, excnpecis sxoi 3HauHO nidcunosana ocmeo-
onacmmuy oughepenyiayito C2C12 i KS483 knimun (s8ionosiono, y 2,1 i 2,7 pazy), mooi six cmabinbha excnpecis
anmu-PTTG1 mwPHK-3 ne eusisuna icmommnozo éniusy Ha ocmeodnacmuy ougpepenyiayiro yux kaimun. Taxum
yunom, noxkazawno, wo PTTGI € sascausum penpeccopom pannix cmaoiil ocmeozenesy i, MOXCIUBO, 3A0isTHUL
V PYUHYBAHHI KICIMKOB0T MKAHUHU, 30Kpema nio yac npozpecysanis PA.

Kurouosi ciosa: 'EH ITYXJIMHHOI TPAHC®OPMALII KJITHUH T'IIIO®I3Y 1, MAJII
HIITMIJIBKOBI PHK, OCTEOBJIACTHA JTU®EPEHIIALILA, ME3EHXIMHI CTOBBYPOBI KJIITU-
HU MU, MOPO®OTEHETUYHI I[TPOTETHU KICTKU, PEBMATOITHWI APTPUT
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Pesmamouonwiii apmpum (PA) — xponuueckoe gocnanumenvroe 3ab01esanue, Xapakmepusyrujeecs
MACCUBHBIM PA3PYUIEHUEM MKAHEl CYCMAasos. Ipo3us KOCMHOU MKAHY OMHOCUMCS K Hauboiee 601e3HeHHbIM
nocredcmsuam PA u accoyuupyemces ¢ msicecmuio 3a001e8aHUs U HEOIALONPUSAMHBIM (QYHKYUOHATIHBIM Pe3)iib-
mamom. HMzeecmmuo, umo mopgozenemuueckue npomeunwvt kocmu (MIIK) u cuenanvuas yeno Wnt npunadnexcam
K KIHOUe8bIM Pe2)ISINOPHbIM NYMSAM, KOMOpble UHOYYUPYIOM U HOOOEPIHCUBAIOM (hOPMUPOBAHUE XPAUEBOU U KOCHI-
Houl mKanel. Mol npeononazaem, umo 2en onyxonegoil mpancgopmayuu kiemox eunogusa 1 (PTTG1) u PTTGI-
ceazvlearowuti npomeur 1 (PBF 1) aenaemcs 6axcHotl cucmemotl, Komopas 8bInonHAem QyHKYUI HOB020 He2amue-
HO20 pe2yiaimopa 20Meocmasa KOCHMHOU MKAKU, U, 6ePOMHO, 3a0elicmeosana 8 namozeHese PA.

Lenvio dannoeo uccnedosanus 6viio usyuenue enuanus HokoayHa sxenpeccuu MPHK eena PTTGI, onocpe-
008aHHO20 KOpomKuMU winuibkossimu (kuy) PHK, Ha pannue cmaouu ocmeobnacmuou ouggpepenyuayuis, uHOyyupo-
sannou MIIK. Ananuz pesynbmamog sKcnepumenma nposoowics CREKMpOhOmMoMempudecKum UaMepeHuem aKmue-
HOCMU Weno4Holl Pocghamaszvl, KOMOPAs WUPOKO UCNONbIYEMCSL 8 KAYeCmee MapKepa paHHe20 0CMeo2eHesa.
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Yemanoeneno, umo onoxuposarnue sxcnpeccuu mPHK cena PTTG1, onocpedosannoe kuuPHK, ycunueano
PaHHUue cmaouu 0Cmeo2ene3d 6 CMAadUIbHLIX MYTbMUKIOHAAbHUX Kynomypax kiemok aunutl C2C12 u KS483.
Haubonee svipasicennulii s¢pgpexm noxazan ons anmu-PTTG1 xwPHK-1, sxcnpeccust Komopou 3HaUUmenvHo yCu-
ausana ocmeoonacmuy oughgpepenyuayuro C2C12 u KS483 xnemox (6 2,1 u 2,7 paza coomeemcmeeHHo), moz20a
Kax cmabunvras sxcnpeccust atmu-PTTG1 _kwPHK-3 ne conpogoarcoanace cyujecmeeHHbiM 6TUsHUEM HA OCHEO-
oracmuyro ouggepenyuayuio smux kiemox. Takum odpazom, yecmarnogneno, umo PTTGI sersemcs gaxcHvim
Penpeccopom pasHux cmaoull 0Cmeo2eHe3d U, B03MOJICHO, 3a0eUCMBOBAH 8 PA3PYULEHUU KOCHHOU MKAHU, 8 YaCH-
HOCmU 60 8pems npoepeccuposanus PA.

Kumouesbie ciiosa: TEH OITYXOJIEBOW TPAHC®OPMAIIMU KJIETOK TUITO®U3A 1,
KOPOTKHME HIITMJIBKOBBIE PHK, OCTEOBJIACTHA A JTUODPEPEHITMALIA, ME3SEHXH-
MAJIBHBIE CTBOJIOBBIE KJIETKW MBI, MOPOOI'EHETUYECKUE ITPOTENHBLI KOCTH,
PEBMATOUJIHBINI APTPUT

Rheumatoid arthritis (RA) is a chronic, 10, 14, 15]. Osteoblast differentiation is supported
systemic autoimmune inflammatory disorder that predominantly by BMPs (the members of the
may affect many tissues and organs, but primarily transforming growth factor  (TGF-) superfami-
attacks the synovium of joints. The process induces ly) and by Wnt proteins. Although commitment of
synovitis, synovial hyperplasia with neovascular- mesenchymal precursors to the osteo- and chon-
ization and overproduction of the synovial fluid, drogenic lineages requires a precise coordination
which causes joint swelling, stiffness, and pain. of Wnt and BMP signals, the canonical Wnt path-
The final consequences are the destruction of ar- way subsequently acts as master regulator of the
ticular cartilage and the bones erosions within the osteogenesis [1, 23].
joints [12, 38]. The disease has a significant medi- Wnt/B-catenin signaling regulates os-
cal and social impact, since the absence of effective teogenesis through multiple mechanisms. Wnts
treatment leads to rapid development of disability repress alternative mesenchymal differentiation
and reduced quality of patients’ life [5, 9, 27]. pathways such as adipocyte and chondrocyte
Although the RA has been the subject of numer- differentiation and promote osteoblast differen-
ous investigations, exact molecular mechanisms tiation, proliferation, and mineralization activity,
that trigger a disease and exacerbate its progres- while blocking osteoblast apoptosis. By increas-
sion stay poorly understood [30]. Strikingly, sev- ing the ratio of osteoprotegerin (OPG)/recep-
eral signaling pathways are strongly dis-regulated tor activator of nuclear factor kappa-B ligand
in fibroblast-like synoviocytes, monocytes, neutro- (RANKL), B-catenin represses osteoclastogenesis
phils, endothelial and other cells in joints of the RA [16,21]. In a physiological state, cortical bone for-
patients [5, 27, 39]. It was shown that bone mor- mation and resorption next to joints are in balance
phogenetic protein (BMP) and Wnt signaling path- but inflammatory diseases such as RA lead to an
way are key players that induce and support carti- imbalance between these processes. Bone forma-
lage and bone formation and maintenance [2, 25, tion is hampered by tumor necrosis factor (TNF)-
26, 31]. The activation of Wnt pathway participates mediated expression of inhibitors which suppress
in the formation of a proper balance between bone Wnt signals, whereas bone resorption is enhanced
and cartilage formation and remodeling. However, by the expression of RANKL [6] — a key factor
in patients with RA and other skeletal disorders this for osteoclast differentiation and activation.
balance is disturbed [5, 13, 25, 35]. In terms of commitment and differentia-

Different studies of human rheumatic and tion, there is crosstalk between the Wnt and BMP
orthopedic diseases and specific mouse models pathways. Wnt directly controls the expression of
with both activating and null mutations of pro- a series of genes playing crucial roles in osteoblast
teins required for canonical Wnt signaling sug- biology [36].
gest a crucial role for this signaling pathway in the Pituitary tumor-transforming gene (PTTG)
regulation of bone formation, maintenance, repa- is a proto-oncogene that was first isolated from
ration and remodeling by regulating osteoblast rat pituitary tumor GH4 cells [33]. Subsequent
and osteoclast proliferation and differentiation [3, studies demonstrated that its protein product Se-
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curin mediates sister chromatid separation during
mitosis [46]. The mechanisms of PTTG action
include protein—protein interactions, transcrip-
tional activity, and paracrine/autocrine regula-
tion. During mitosis and following chromosome
alignment, PTTG is degraded in the proteasomes
at metaphase to anaphase transition through the
anaphase-promoting complex/cyclosome, releas-
ing inhibition of separase, which in turn mediates
the proteolysis of the cohesins ring that holds sis-
ter chromatids together [28].

The PTTG family includes PTTG1,PTTG2,
and PTTG3 [37, 41]. Human PTTGI gene is locat-
ed on chromosome 5 and encodes Securin — a pro-
tein consisting of 202 amino acids (22 kDa) [41].
In human, PTTG1 exhibits 91 and 89 % amino acid
sequence homology with PTTG2 and PTTGS3, re-
spectively [33]. PTTGI is the most abundant and
widely studied form of the substance [37]. Both
PTTGI gene inactivation and its excessive expres-
sion lead to the appearance of aneuploid cells [28].

Over-expression of PTTGI gene was re-
ported to occur in several neoplasms, including pi-
tuitary tumors, as well as carcinomas of Tung, breast,
esophagus, colon, rectum, and ovary. PTTGI is
implicated in several normal cellular processes, in-
cluding DNA damage repair, apoptosis, and angio-
genesis. It also interacts with a number of factors
both in vivo and in vitro 28, 37]. PTTG1 also pos-
sesses trans-activating action and induces upregu-
lation of several other genes [37].

Mice lacking PTTG1 gene show testicu-
lar and splenic hypoplasia, thymic hyperplasia,
thrombocytopenia, aberrant cell cycle progres-
sion, and premature centromere division [43, 44].

Subcellular PTTG1 localization, particu-
larly the significance of cytoplasmic versus nuclear
expression, remains controversial. Nuclear PTTG1
functions as a Securin, inhibitor of premature sis-
ter chromatid separation, as well as a potential
transcriptional activator, whereas the role of cyto-
plasmic PTTG1 remain unclear. While differential
PTTGTI localization may be due to the variations
in cell lines and tumor types examined, cell cycle-
dependent expression of PTTG1 gene may also
account for the reported differences. Transloca-
tion of PTTG1 from cytoplasm to nucleus might
be mediated by the PTTG-binding factor (PBF)
which contains a nuclear localization signal [4, 37].

73

Another mechanism proposed to be involved in
PTTG] translocation is based on functioning of the
mitogen-activated protein kinase (MAPK) path-
way [32, 37, 45].

It was shown that PBF1 gene expression
was reduced in long standing RA comparably to
early stages of RA [24]. Simultaneously, PBF1
is a target gene for RUNX2 — osteoblastspecific
transcription factor [40]. Therefore, one can hypo-
thesize that PTTG1/PBF1 axis represents a novel
key system in regulating homeostasis of joint tis-
sues with involvement into RA progression and
pathogenesis of other related diseases.

According to our preliminary data, PTTG1
gene overexpression leads to a potent inhibition
of Wnt signaling pathway in target cells (unpub-
lished data). Such result allows suggesting that
PTTGI1/PBF1 system can serve as a new nega-
tive regulator of bone and potentially cartilage
homeostasis. In present study, we explored the
effect of stable shRNA-mediated knockdown of
PTTGI mRNA expression on the early stages
of BMP-induced osteoblast differentiation.

Materials and methods

Cell culture. Our studies were performed
with immortalized mouse mesenchymal stem
cells of C2C12 and KS483 lines cultured in the
Dulbecco’s modified Eagle’s medium (DMEM;
Sigma-Aldrich, Germany) containing 10 % fetal
bovine serum (FBS; Biowest, France). The cells
were grown in a 5 % CO,-containing atmosphere
at 37 °C and 100 % humidity. Culture medium
was changed every 2-3 days. Before sub-cultiva-
tion, cells were washed with the phosphate-buft-
ered saline (PBS) that contained 137 mM NacCl,
2.7 mM KCl, 4.3 mM Na,HPO, and 1.4 mM
KH,PO, with pH 7.4.

Before seeding, cell viability was moni-
tored using the Trypan blue staining solution
(0.1 %), and cell number was counted in the he-
matocytometer chamber.

Short (small) hairpin RNA (shRNA).
The set of validated shRNA lentiviral constructs
that specifically target the expression of mouse
version of PTTG1 mRNA and scrambled shRNA
was purchased as a part of MISSION library
from Sigma-Aldrich (USA).
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Stable infection. C2C12 and KS483 cells
were plated in a complete growth medium over-
night. Lentiviral particles were added at the multi-
plicity of infection (MOI)=5 or =10 in the presence
of diethylaminoethyl (DEAE)-dextran, and cells
were incubated for 24 hours. Then, equal amount
of fresh culture medium with no lentivirus was
added, and the cells were incubated for additional
24 hours. Two days later, efficiently transduced cells
were selected by adding 3—4 pg/ml of puromycin
(PanreacAppliChem, Spain) for next seven days.
Obtained puromycin-resistant multi-clonal cultu-
res of indicated cell lines were maintained on 1 pg/ml
of puromycin and used for studies. Two weeks
(for KS483) or three weeks (for C2C12 cells) after
transduction, these cells were tested for the expres-
sion of the lentiviral p24/Gag capsid protein using
ELISA (R&D Systems, USA) and no Gag p24 was
detected. An efficacy of shRNA knockdown was
confirmed using the Real-Time RT-PCR amplifi-
cation (data not shown).

Induction of osteoblast differentiation.
C2C12 and KS483 cell lines were induced to dif-
ferentiate into osteoblasts by different BMPs, in-
cluding BMP2 and BMP7 [17]. These cells were
split at a density of 1.5x10* cells per cm? in 24-
well plates. Next day, cells were transduced with
a combination of adenoviral constructs encod-
ing recombinant BMP2 and BMP7 at the MOI
even to 500 for each one construct [18] to induce
a production of BMP2/7 heterodimers along with
appropriate homodimers. During osteogenesis
assay, C2C12 and KS483 cells were cultured for
4 days in a differentiation-supporting medium
supplemented with 50 pg/ml ascorbic acid.

Alkaline phosphatase assay. The alkaline
phosphatase activity (ALP, EC 3.1.3.1) produced
by C2C12 and KS483 cells was analyzed spectro-
photometrically using a n-nitrophenylphosphate
(n-NPP) as a substrate [42]. Four days after the
induction of osteogenesis, the supernatants were
withdrawn and cells were washed twice with PBS.
The cells were lysed in ALP lysis buffer that con-
tained 10 mM glycine, 100 pM MgCl,, 10 uM
ZnCl, and 0.1 % Triton X100. Then, 10 pl of cell
lysate and 90 pl of ALP assay buffer (100 mM gly-
cine, 1 mM MgCl,, 100 uM ZnCl,) supplemented
with 6 mM niNPP (PierceThermo Fisher Scientific,
USA) [42], were mixed gently and incubated at
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room temperature. Following the reaction with
alkaline phosphatase, a yellow reaction product
forms may be read at 405 nm. The optical den-
sity was measured (OD, ) in 96well plate reader
(BioTek, USA). The color intensity is directly
proportional to the amount of ALP.

Statistical analysis. All experiments were
repeated twice, using three parallel wells (n=3)
in each variant. Results of spectrophotometric
measurements of ALP activity were expressed as
a mean =+ standard deviation (M£SD). Data were
analyzed using GraphPad Prism 6 program. Sta-
tistical differences between experimental variants
were assessed by Student’s #-test. Appropriate
P values were shown in graphs to demonstrate the
significance of the results. Only differences with
P-values lower than 0.05 were considered as
significant.

Results and discussion

In this study, the effect of stable sShRNA-
mediated knockdown of PTTG1 mRNA expres-
sion on early stages of BMP-induced osteoblast
differentiation was explored. In our experiments,
we used mouse mesenchymal stem cells of C2C12
and KS483 lines that can be induced to differenti-
ate into osteoblasts by different BMPs, including
BMP2 and BMP7 [17].

Nowadays, the use of RNA interference
(RNAI) has emerged as a powerful tool for the
study of gene function in mammalian cells. The
mechanism of RNAI is based on the sequence-
specific degradation of host mRNA through the
cytoplasmic delivery of double-stranded RNA
(dsRNA) identical to the target sequence. Whilst
there are several options for synthetic and ex-
pressed RNAi: the most commonly-used form
of synthetic RNAI is siRNA, and of expressed
RNAIi is shRNA [7, 29].

ShRNA-expressing constructs are fre-
quently applied as a convenient substitution for
transient transfection with small interfering RNA
(siRNA) specifically targeting gene expression due
to allowing to avoid initial side effects of trans-
fection required for siRNA delivery to the cells.
Transient overexpression of shRNA targeting gene
mRNA expression, similarly to many other siRNA
and shRNA, always induces some off-target inter-
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feron response (data not shown). Therefore, we gen-
erated lentivirally transduced multi-clonal cultures
of C2C12 and KS483 cells with stable expression
of shRNAs that specifically target the expression
of PTTG1 mRNA (anti-PTTG1_shRNA-1, anti-
PTTG1 _shRNA-2 and anti-PTTG1_shRNA-3)
and scrambled shRNA that does not have target
gene was used as a control. These cell cultures were
obtained in Leiden University (The Netherlands)
through cooperation carried out by Dr. O. Kor-
chynskyi. Cells of C2C12 and KS483 lines were
transduced with lentiviral constructs encoding indi-
cated shRNAs and scrambled shRNA. Transduced
cells were selected by adding puromycin. As a re-
sult of next ELISA testing for the presence of the
lentiviral Gag p24 capsid protein, no Gag p24
was detected.

According to EU rules for Genetically
modified organisms handling, the obtained Gag
p24-negative puromycin-resistant multi-clonal cul-
tures of C2C12 cells were allowed to culture at the
Biosafety Level I lab, brought to Ukraine, and the
used in further experiments. An efficacy of sSIRNA
knockdown was confirmed with a Real-Time RT-
PCR amplification and varied from 6.5 to 8 times
for most efficient variants (data not shown).

In appropriate variants of the experiments,
C2C12 and KS483 cells were treated with a mix-
ture of recombinant BMP2 and BMP7 adenovi-
ruses to induce their osteoblast differentiation.
BMPs have been reported to induce gene expres-
sion of various extracellular matrix proteins in
mesenchymal cells and osteoblasts. In particu-
lar, the BMP-induced gene expression of ALP
is widely applied as a marker of early stages of
BMP-induced osteoblast differentiation [8, 11,
17, 19, 20]. Thus, like other investigators, we
successfully used it in our studies. The results of
spectrophotometric measurement of ALP activity
are presented in fig. 1 and fig. 2.

Efficient shRNA constructs intensified ear-
ly stages of the osteoblast differentiation in stable
multi-clonal cultures of C2C12 and KS483 cells
as compared with control cells that normally ex-
pressed PTTGI gene.

As shown on fig. 1 and fig. 2, the most pro-
nounced effect was found for anti-PTTG1_shRNA-1
which expression stimulated osteoblast differentia-
tion of both C2C12 cells (2.1 fold) and KS483 cells
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(2.7 fold) when compared with scrambled shRNA
(1.175%0.025, n=3 and 0.108+0.010, n=3, respec-
tively). The anti-PTTG1_shRNA-3 expression did
not show a significant influence on the osteoblast
differentiation of model cells.
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Fig. 1. Alkaline phosphatase activity in the lysates
of C2C12 cells with stable expression of sShRNAs
that specifically target the expression of PTTG! mRNA
(anti-PTTG1_shRNA-1, anti-PTTG1_shRNA-2
and anti-PTTG1_shRNA-3) and scrambled shRNA
that was used as a control

Stable lentivirally transduced multi-clonal cultures
of C2C12 cells were split into 24-well plates and treated with
a mixture of recombinant BMP2 and BMP?7 adenoviruses to
induce their osteoblast differentiation. Alkaline phosphatase
activity was analyzed in cell lysates spectrophotometrically.
Optical density at 405 nm is shown. Statistical differences
are indicated (* — P<0.05, ** — P<0.01).
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Fig. 2. Alkaline phosphatase activity in the lysates of
KS483 cells with stable expression of shRNAs that spe-
cifically target the expression of PTTGI mRNA (anti-
PTTG1 shRNA-1, anti-PTTG1_shRNA-2
and anti-PTTG1_shRNA-3) and scrambled shRNA
that was used as a control

Stable lentivirally transduced multi-clonal cultures
of KS483 cells were split into 12-well plates and treated with
a mixture of recombinant BMP2 and BMP?7 adenoviruses to
induce their osteoblast differentiation. Alkaline phosphatase
activity was analyzed in cell lysates spectrophotometrically.
Optical density at 405 nm is shown. Statistical differences
are indicated (* — P<0.05, ** — P<0.01).
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The intensive osteogenic processes in
C2C12 and KS483 cells with stable expression of
shRNAs target gene sequences specific for PTTGI
gene (anti-PTTG1_shRNA-1 and anti-PTTGI _
shRNA-2) indicated PTTG1 as an important re-
pressor of early stages of osteogenesis. In other our
studies was demonstrated that shRNA-mediated
knockdown of PTTG1 and PBF1 mRNAs expres-
sion also inhibited late stages of osteoblast differ-
entiation during which Wnt signaling pathway is
activated [22]. This showed that activation/inhibi-
tion and regulation of osteogenesis are poorly un-
derstood, in particular during RA pathogenesis. It is
a complex system that includes many components
and interactions and many of them are still un-
known. Thus, our data together with results of other
investigators allow us to hypothesize that PTTG1
and its partner protein PBF1 represents a novel key
mechanism for regulation of the homeostasis of
skeletal tissues. Our understanding of the precise
molecular mechanisms and functional impact of
inhibition of Wnt signaling pathway by PTTGI is
crucial for proper understanding of its role in bone
remodelling and bone erosion formation during RA
pathogenesis and progression. Besides this, under-
standing of these mechanisms can become a basis
for development of novel strategies in diagnostics
and treatment of this and other related disorders.

Conclusions

We found that shRNA-mediated knock-
down of PTTG1 mRNA expression potentiated
BMP-induced early stages of osteogenesis in stable
multi-clonal cultures of C2C12 and KS483 cell
lines. The most pronounced effect was found for
stably expressed anti-PTTG1_shRNA-1 which
stimulated osteoblast differentiation in both C2C12
and KS483 cells (2.1 and 2.7 fold, respectively),
whereas anti-PTTG1_shRNA-3 stable expression
did not show a significant effect on the osteoblast
differentiation in these cells. Hence, PTTG1 is an
important repressor of early stages of osteoblast
differentiation and, thus, can serve as an inhibi-
tor of bone remodelling, in particular, during RA
progression.

Perspectives for future research. Next
investigations will be focused at the validation of
the biological significance of our results obtained in
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this study when using experimental model of mice
with targeted inactivation of PTTGI gene.
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