Download full text in PDF

Bìol. Tvarin. 2023; 25 (1): 20–26.
https://doi.org/10.15407/animbiol25.01.020
Received 03.10.2022 ▪ Revision 27.12.2022 ▪ Accepted 12.03.2023 ▪ Published online 31.03.2023


Lipid composition and peroxidation products in the body tissues in bees under the action of different doses of nanotechnological Ge citrate and the probiotic Lactobacillus casei В-7280

A. Z. Pylypets1, M. Ya. Spivak2, R. S. Fedoruk1, M. M. Tsap1, I. I. Kovalchuk1,3, M. M. Romanovyсh1

This email address is being protected from spambots. You need JavaScript enabled to view it.

1Institute of Animal Biology NAAS, 38 V. Stusa str., Lviv, 79034, Ukraine
2Zabolotny Institute of Microbiology and Virology NAS of Ukraine, 154 Aсad. Zabolotny Str., Kyiv, 03143, Ukraine
3Stepan Gzhytsky National University of Veterinary Medicine and Biotechnologies Lviv, 50 Pekarska str., Lviv, 79010, Ukraine


Modern methods of preserving honey bees focus on increasing their viability, feeding level and productivity development during different growth periods. There is a tendency to use new effective remedies of natural origin. Their action mechanisms differ from synthetic substances and drugs due to the activation of the body’s protective reactions at the physiological level. The probiotic Lactobacillus casei IMV B-7280 has an effective stimulating effect on physiological processes in bees under various environmental and experimental conditions. The physiological effect of this probiotic is associated with normalizing of the intestinal bacterial microflora and participation in modulating body’s protective reactions. The resistance of honey bees also depends on mineral nutrition, which affects metabolic processes at the tissue, organ and system levels and determines the vitality and resistance of the organism. Mineral elements are involved in protein, lipid, carbohydrate and energy metabolism, they activate enzyme systems. Therefore, the aim of the research was to determine the effect of the probiotic L. сasei B-7280 in combination with different doses of Ge nanotechnological citrate (NTC) on the lipid composition and peroxidation products content in bees’ tissues. Bees of the control group were fed 60% sugar syrup (SS) in the amount of 1 cm3/group/day. The bees of the first experimental group (R1) were fed 1 cm3 of SS, 0.1 μg of Ge NTC and a solution of probiotic L. casei B-7280 (106 cells/cm3); the second experimental group (R2) received 0.2 μg of Ge citrate and probiotic L. casei B-7280 (106 cells/cm3). The feeding duration was 34 days. It was established that feeding sugar syrup, L. сasei and different doses of Ge citrate increased the content of phospholipids, mono- and diacylglycerols in the R2 group, cholesterol esterification in the R1 group, and decreased free cholesterol, non-esterified fatty acids compared to the K group and P period. The results indicate a dose-dependent effect of Ge NTC on lipid metabolism in body tissue homogenates. There was an increase in the triacylglycerols level in the lipids in all groups during the experimental period. The biological effect of nanotechnological Ge citrate and L. сasei cause a decrease of lipid peroxidation processes in bees of the experimental groups.

Key words: bees, Ge citrate, probiotic, lipids, peroxidation products


  1. Almasri H, Tavares DA, Diogon M, Pioz M, Alamil M, Sené D, Tchamitchian S, Cousin M, Brunet JL, Belzunces Physiological effects of the interaction between Nosema ceranae and sequential and overlapping exposure to glyphosate and difenoconazole in the honey bee Apis mellifera. Ecotoxicol. Environ. Saf. 2021; 217: 112258. DOI: 10.1016/j.ecoenv.2021.112258.
  2. Briganti S, Picardo M. Antioxidant activity, lipid peroxidation and skin diseases. What’s new. Eur. Acad. Dermatol. Venereol. 2003; 17 (6): 663–669. DOI: 10.1046/j.1468-3083.2003.00751.x.
  3. Cho JM, Chae J, Jeong SR, Moon MJ, Shin DY, Lee JH. Immune activation of Bio-Germanium in a randomized, double-blind, placebo-controlled clinical trial with 130 human subjects: Therapeutic opportunities from new insights. PLoS ONE. 2020; 15 (10): e0240358. DOI: 10.1371/journal.pone.0240358.
  4. Daisley BA, Chmiel JA, Pitek AP, Thompson GJ, Reid G. Missing microbes in bees: How systematic depletion of key symbionts erodes immunity. Trends Microbiol. 2020; 28 (12): 1010–1021. DOI: 1016/j.tim.2020.06.006.
  5. Dolaychuk OP, Fedoruk RS, Kovalchuk II, Kropyvka SY. Physiological and biochemical processes in the organisms of rats that were fed with different amounts of germanium citrate. Bìol. Tvarin. 2015; 17 (2): 50–56. DOI: 10.15407/animbiol17.02.050. (in Ukrainian)
  6. Dvylyuk I. Mineral and lipid composition the body of the honeybees organism and the biological value of honey in the summer-autumn period under the conditions of feeding honey bees by citrate-capped silver and copper nanoparticles. Mess. LNUVMBT. Ser. Agricult. Sci. 2018; 20 (89): 89–94. DOI: 10.32718/nvlvet8917.
  7. Dvylyuk II, Kovalchuk II. Reproductive ability of bee queens at the conditions of feeding citrates of Argentum and Cuprum. Bìol. Tvarin. 2017; 19 (2): 30–36. DOI: 10.15407/animbiol19.02.030.
  8. Falalyeyeva TM, Leschenko IV, Beregova TV, Lazarenko LM, Savchuk OM, Sichel LM, Tsyryuk OI, Vovk TB, Spivak Probiotic strains of lactobacilli and bifidobacteria alter pro- and anti-inflammatory cytokines production in rats with monosodium glutamate-induced obesity. Fiziol. Zh. 2017; 63 (1): 17–25. DOI: 10.15407/fz63.01.017.
  9. Fedoruk RS, Kovalchuk II, Mezentseva LM, Tesarivska UI, Pylypets AZ, Kaplunenko VH. Germanium compounds and their role in animal body. Bìol. Tvarin. 2022; 24 (1): 50–60. DOI: 10.15407/animbiol24.01.050. (in Ukrainian)
  10. Fedoruk RS, Kovalchuk II, Romaniv LI, Xrabko MI. Influence of germanium citrate and selenium on lipid and heavy metals content in melliferous bees’ organism. Bìol. Tvarin. 2014; 16 (2): 141–149. Available at: http://aminbiol.com.ua/index.php/archive/100-archive/bt-16-2-2014/1487 (in Ukrainian)
  11. Fedoruk RS, Tesarivska UI, Kovalchuk II, Tsap MM, Kaplunenko VH, Koleschuk OI, Khrabko MI. Biological effects of iodine, selenium, sulfur citrates in broiler chickens. Mech. Biosys. 2021; 12 (3): 523−530. DOI: 10.15421/022172.
  12. Feldlaufer MF, Harrison Neutral sterols in honey bee (Apis mellifera) feces. J. Apicult. Res. 2020; 59 (5): 1033–1036. DOI: 10.1080/00218839.2020.1753917.
  13. Folch J, Lees M, Stanley GH. A simple method for the isolation and purification of total lipids from animal tissues. Biol. Chem. 1957; 226 (1): 497–509. DOI: 10.1016/S0021-9258(18)64849-5.
  14. Frias BED, Barbosa CD, Lourenço AP. Pollen nutrition in honey bees (Apis mellifera): impact on adult health. Apidologie. 2016; 47 (1): 15–25. DOI: 10.1007/s13592-015-0373-y.
  15. Galiniak S, Mołoń M, Biesiadecki M, Bożek A, Rachel M. The role of oxidative stress in atopic dermatitis and chronic urticaria. Antioxidants. 2022; 11 (8): 1590. DOI: 10.3390/antiox11081590.
  16. Hartfelder K, Bitondi MMG, Brent CS, Guidugli-Lazzarini KR, Simões ZLP, Stabentheiner A, Tanaka ÉD, Wang Standard methods for physiology and biochemistry research in Apis mellifera. J. Apicult. Res. 2013; 52 (1): 1−48. DOI: 10.3896/IBRA.1.52.1.06.
  17. Karavan VV, Kachmaryk DY, Cherevatov VF, Yazlovytska LS. Influence of wintering temperature on the state of the antioxidative system in Apis mellifera Bìol. Tvarin. 2021; 23 (4): 32–42. DOI: 10.15407/animbiol23.04.032. (in Ukrainian)
  18. Kosinov MV, Kaplunenko VH. Method of obtaining metal carboxylates “Nanotechnology of obtaining metal carboxylates”. Patent UA no 38391. from 12.01.2009. Available at: https://buipv.org/searchINV/search.php?action=viewdetails&IdClaim=128062 (in Ukrainian)
  19. Kovalchuk II, Fedoruk RS. Content of heavy metals in the bees tissues and products depending on agroecological conditions of the Carpathians region. Bìol. Tvarin. 2013; 15 (4): 54–65. Available at: http://aminbiol.com.ua/index.php/archive/94-archive/bt4-15-2013/1536 (in Ukrainian)
  20. Kovalchuk II, Fedoruk RS, Rivis YF, Romaniv LI. Lipid and fatty acid composition of body tissues of honey bees and pollen under conditions of supplementation with germanium and selenium nanoaquacitrates. Tech. Bull. SRCIVMFA IAB. 2014; 15 (2−3): 31−36. Available at: http://nbuv.gov.ua/UJRN/Ntbibt_2014_15_2-3_7 (in Ukrainian)
  21. Kovalchuk II, Fedoruk RS, Spivak MY, Romanovych MM, Iskra RY. Lactobacillus casei IMV B-7280 immunobiotic strain influence on the viability of honey bees and the content of microelements in the organism. Z. 2021; 83 (2): 42–50. DOI: 10.15407/microbiolj83.02.042.
  22. Kovalchuk II, Kykish IB, Kaplunenko VH. Influence of citrate microelements on the reproductive capacity of queen bees. In: Actual problems of natural sciences: modern scientific discussions. A collective monograph. Riga, Latvia, Baltija Publ., 2020; 87–110. DOI: 10.30525/978-9934-26-025-4-6.
  23. Lazarenko LM, Babenko LP, Gichka SG, Sakhno LO, Demchenko OM, Bubnov RV, Sichel LM, Spivak MY. Assessment of the safety of Lactobacillus casei IMV B-7280 probiotic strain on a mouse model. Antimicr. Prot. 2021; 13 (6): 1644–1657. DOI: 10.1007/s12602-021-09789-1.
  24. Lazarenko LM, Babenko LP, Mokrozub VV, Demchenko OM, Bila VV, Spivak MY. Effects of oral and vaginal administration of probiotic bacteria on the vaginal microbiota and cytokines production in the case of experimental staphylococcosis in mice. Mikrobiol. Z. 2017; 79 (6): 105–119. DOI: 10.15407/microbiolj79.06.105.
  25. Li Z, Hou M, Qiu Y, Zhao B, Nie H, Su S. Changes in antioxidant enzymes activity and metabolomic profiles in the guts of honey bee (Apis mellifera) larvae infected with Ascosphaera apis. Insects. 2020; 11 (7): 419. DOI: 10.3390/insects11070419.
  26. Lu CY, Huang PJ, Hsu CY. The cholesterol-hydroxyecdysone-vitellogenin pathway is involved in the longevity of trophocytes and oenocytes of queen honey bees (Apis mellifera). Apidologie. 2018; 49: 721–733. DOI: 10.1007/s13592-018-0596-9.
  27. Mucci CA, Ramirez L, Giffoni RS, Lamattina L. Cold stress induces specific antioxidant responses in honey bee brood. Apidologie. 2021; 52: 596–607. DOI: 10.1007/s13592-021-00846-w.
  28. Mylostiva D. Influence of germanium citrate on the defensive antioxidative system of rats organism. Tech. Bull. SRCIVMFA IAB. 2017; 18 (2): 34–37. Available at: http://nbuv.gov.ua/UJRN/Ntbibt_2017_18_2_7 (in Ukrainian)
  29. Neov B, Georgieva A, Shumkova R, Radoslavov G, Hristov P. Biotic and abiotic factors associated with colonies mortalities of managed honey bee (Apis mellifera). Diversity. 2019; 11 (12): 237. DOI: 10.3390/d11120237.
  30. Prezenská M, Sobeková A, Sabová L. Antioxidant enzymes of honeybee larvae exposed to oxamyl. Folia Vet. 2019; 63 (4): 9–14. DOI: 10.2478/fv-2019-0032.
  31. Romaniv LI, Kovalchuk II, Pashchenko AG, Fedoruk RS. Content of lipids in tissues of the melliferous bees additionally fed with soybean meal, sugar syrup and citrates of Co and Ni. Bìol. Tvarin. 2018; 20 (3): 84–92. DOI: 10.15407/animbiol20.03.084. (in Ukrainian)
  32. Tauber JP, Collins WR, Schwarz RS, Chen Y, Grubbs K, Huang Q, Lopez D, Peterson R, Evans JD. Natural product medicines for honey bees: Perspective and protocols. Insects. 2019; 10 (10): DOI: 10.3390/insects10100356.
  33. Tawfik AI, Ahmed ZH, Abdel-Rahman MF, Moustafa AM. Effect of some bee bread quality on protein content and antioxidant system of honeybee workers. J. Trop. Insect. Sci. 2022; 43: 93–105. DOI: 10.1007/s42690-022-00888-2.
  34. Tezuka T, Higashino A, Akiba M, Nakamura T. Organogermanium (Ge-132) suppresses activities of stress enzymes responsible for active oxygen species in monkey liver preparation. Enz. Res. 2017; 5 (2): 13–23. DOI: 10.4236/aer.2017.52002.
  35. Vlizlo VV. (ed.). Laboratory Methods in Biology, Stockbreeding and Veterinary Medicine. Lviv, 2012: 764 p. (in Ukrainian)
  36. Yefimenko T, Odnosum H, Vorobiy O. Flow of sacbrood disease in creation of infertile period at bee colonies in comparison with bee colonies treatment with eucalyptus and hypericum extracts and analogue means. Ukr. 2021; 1 (6): 18–23. DOI: 10.46913/beekeepingjournal.2021.6.03.

Search