Bìol. Tvarin, 2018, volume 20, issue 4, pp. 34–43


S. O. Kostenko

This email address is being protected from spambots. You need JavaScript enabled to view it.

National University of Life and Environmental Science of Ukraine,
15 Heroyiv Oborony str., Kyiv 03041, Ukraine

Aquaculture, by making a powerful contribution to the production of products in the world, must be sustainable, ecological and economical. The growth of aquaculture volumes is inextricably linked with the outbreaks of infectious diseases, as they cause high mortality, severe economic losses and environmental impacts. Therefore, intensive aquaculture is not viable without preventing the spread of viruses. In a few years, vaccination has become the most important method of preventing diseases in aquaculture. Effective prevention based on the stimulation of the immune system of the fish is necessary for further development of the industry. The promising results of DNA vaccination of fish against some types of infections give hope for progress in this area in the future. However, modern vaccination methods have certain disadvantages associated with the difficulty of protecting fry, restrictions on the use of various methods of introducing a vaccine, the emergence of new viruses.

The globalization of the aquaculture industry has led to an increase in the number of new viruses that infect aquatic organisms. These detected viral pathogens have proven that they are a challenge for the use of traditional cell cultures and immunological analyzes to detect new viruses for the identification of no antibodies. Virus metagenomics has the potential to detect new viruses without prior knowledge of their genome sequence data and can provide solutions for the study of unsuitable viruses.

Since the populations of aquaculture objects differ in their resistance to infectious diseases, the search for animals resistant to pathogens is an important trend in modern science. Another approach to obtaining lines resistant to infection is the creation of transgenic organisms that can produce substances that improve the immune response.


  1. Anderson E. D., Mourich D. V., Fahrenkrug S. C., La Patra S., Shepherd J., Leong J. A. Genetic immunization of rainbow trout (Oncorhynchus mykiss) against infectious hematopoietic necrosis virus. Molecular marine biology and biotechnology, 1996, vol. 5, issue 2, pp. 114–122.
  2. Ayoola S. O., Idowu A. A. Biotechnology and Species Development in Aquaculture. African Journal of Biotechnology, 2008, vol. 7, no. 25, pp. 4722–4725.
  3. Bibby K. Metagenomic identification of viral pathogens. Trends in Biotechnology, 2013, vol. 31, issue 5, pp. 275–279. https://doi.org/10.1016/j.tibtech.2013.01.016
  4. Boudinot P., Blanco M., de Kinkelin P., Benmansour A. Combined DNA with the glycoprotein gene of viral hemorrhagic septicemia virus and infectious hematopoietic necrosis virus induces double-specific protective immunity y and nonspecific response in rainbow trout. Virology, 1998. vol. 249, no. 2, pp. 297–306. https://doi.org/10.1006/viro.1998.9322
  5. Byon J. Y., Ohira T., Hirono I., Aoki T. Comparative immune responses in Japanese flounder, Paralichthys olivaceus after vaccination with viral hemorrhagic septicemia virus (VHSV) recombinant glycoprotein and DNA vaccine using a microarray analysis. Vaccine, 2006, vol. 24, issue 7, pp. 921–930. https://doi.org/10.1016/j.vaccine.2005.08.087
  6. Caipang C. M., Hirono I., Aoki T. Immunogenicity, retention and protective effects of the protein derivatives of formalin-inactivated red seabream iridovirus (RSIV) vaccine in red seabream, Pagrus major. Fish and Shellfish Immunology, 2006, vol. 20, issue 4, pp. 597–609. https://doi.org/10.1016/j.fsi.2005.08.002
  7. Caruffo M., Maturana C., Kambalapally S., Larenas J., Tobar J. A. Protective oral vaccination against infectious salmon anaemia virus in Salmo Salar. Fish and Shellfish Immunology, 2016, vol. 54, pp. 54–59. https://doi.org/10.1016/j.fsi.2016.03.009
  8. Chico V., Ortega-Villaizan M., Falco A., Tafalla C., Perez L., Coll J. M., Estepa A. The immunogenicity of viral haemorragic septicaemia rhabdovirus (VHSV) DNA vaccines can depend on plasmid regulatory sequences. Vaccine, 2009, vol. 27, issue 13, pp. 1938–1948. https://doi.org/10.1016/j.vaccine.2009.01.103
  9. Cho S. Y., Kim H. J., Lan N. T., Han H.-J., Lee D.-C., Hwang J. Y., Kwon M.-G., Kang B. K., Han S. Y., Moon H., Kang H. A., Kim H.-J. Oral vaccination through voluntary consumption of the convict grouper Epinephelus septemfasciatus with yeast producing the capsid protein of red-spotted grouper nervous necrosis virus. Veterinary Microbiology, 2017, vol. 204, pp. 159–164. https://doi.org/10.1016/j.vetmic.2017.04.022
  10. Corbeil S., Kurath G., LaPatra S. E. Fish DNA vaccine against infectious hematopoietic necrosis virus: efficacy of various routes of immunisation. Fish & Shellfish Immunology, 2000, vol. 10, issue 8, pp. 711–723. https://doi.org/10.1006/fsim.2000.0286
  11. Corbeil S., LaPatra S. E., Anderson E. D., Jones J., Vincent B., Hsu Y.-L., Kurath G. Evaluation of the protective immunogenicity of the N, P, M, NV and G proteins of infectious hematopoietic necrosis virus in rainbow trout Oncorhynchus mykiss using DNA vaccines. Diseases of Aquatic Organisms, 1999, vol. 39, no. 1, pp. 29–36. https://doi.org/10.3354/dao039029
  12. Corbeil S., LaPatra S. E., Anderson G., Kurath G. Nanogram quantities of a DNA vaccine protect rainbow trout fry against heterologous strains of infectious hematopoietic necrosis virus. Vaccine, 2000, vol. 18, issue 25, pp. 2817–2824. https://doi.org/10.1016/S0264-410X(00)00078-5
  13. Council. Directive 2006/88/EC on animal health requirements for aquaculture animals and products thereof, and on the prevention and control of certain diseases in aquatic animals; 2006. L328, pp. 14–56. Available at: http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:328:0014:0056:EN:PDF.
  14. De las Heras A. I., Rodríguez Saint-Jean S., Pérez-Prieto S. I. Immunogenic and protective effects of an oral DNA vaccine against infectious pancreatic necrosis virus in fish. Fish and Shellfish Immunology, 2010, no. 28, issue 4, pp. 562–570. https://doi.org/10.1016/j.fsi.2009.12.006
  15. Doan Q. K., Vandeputte M., Chatain B., Haffray P., Vergnet A., Breuil G., Allal F. Genetic variation of resistance to Viral Nervous Necrosis and genetic correlations with production traits in wild populations of the European sea bass (Dicentrarchus labrax). Aquaculture, 2017, vol. 478, pp. 1–8. https://doi.org/10.1016/j.aquaculture.2017.05.011
  16. Dubey S., Avadhani K., Mutalik S., Sivadasan S. M., Maiti B., Girisha S. K., Venugopal M. N., Mutoloki S., Evensen Ø., Karunasagar I., Munang’andu H. M. Edwardsiella tarda OmpA Encapsulated in Chitosan Nanoparticles Shows Superior Protection over Inactivated Whole Cell Vaccine in Orally Vaccinated Fringed-Lipped Peninsula Carp (Labeo fimbriatus). Vaccines, 2016, vol. 4, issue 4, p. 40. https://doi.org/10.3390/vaccines4040040
  17. Duff D. C. B. The oral immunization of trout against bacterium salmonicida. The Journal of Immunology, 1942, vol. 44, no. 1, pp. 87–94.
  18. Dunham R. A. Aquaculture and Fisheries Biotechnology: Genetic Approaches. CABI Publishing, 2004, 372 p. https://doi.org/10.1079/9780851995960.0000
  19. Dunham R. A., Winn R. N. Chapter 1. Production of transgenic fish. In: Pinkert C. A. Transgenic Animal Technology. A Laboratory Handbook. 3rd ed. Elsevier, 2014, 714 p.
  20. Emmenegger E. J., Kurath G. DNA vaccine protects ornamental koi (Cyprinus carpio koi) against North American spring viremia of carp virus. Vaccine, 2008, vol. 26, issue 50, pp. 6415–6521. https://doi.org/10.1016/j.vaccine.2008.08.071
  21. Food and Agriculture Organization of the United Nations. Fisheries. Available at: http://www.fao.org/fisheries.
  22. Food and Agriculture Organization of the United Nations. Statistics. Available at: http://www.fao.org/fishery/statistics.
  23. Food and Agriculture Organization of the United Nations. Document card. Available at: http://www.fao.org/documents/card/en/c/68440a7a-2adb-416d-872b-b233eb44f6c9.
  24. Fernandez-Alonso M., Rocha A., Coll J. M. DNA vaccination by immersion and ultrasound to trout viral haemorrhagic septicaemia virus. Vaccine, 2001, vol. 19, no. 23–24, pp. 3067–3075. https://doi.org/10.1016/S0264-410X(01)00046-9
  25. Garver K. A., LaPatra S. E., Kurath G. Efficacy of an infectious hematopoietic necrosis (IHN) virus DNA vaccine in Chinook Oncorhynchus tshawytscha and sockeye O. nerka salmon. Diseases of Aquatic Organisms, 2005, vol. 64, no. 1, pp. 13–22. https://doi.org/10.3354/dao064013
  26. Gómez-Casado E., Estepa A., Coll J. M. A comparative review on European-farmed finfish RNA viruses and their vaccines. Vaccine, 2011, vol. 29, issue 15, pp. 2657–2671. https://doi.org/10.1016/j.vaccine.2011.01.097
  27. Heppell J., Lorenzen N., Armstrong N. K., Wu T., Lorenzen E., Einer-Jensen K., Schorr J., Davis H. L. Development of DNA vaccines for fish: vector design, intramuscular injection and antigen expression using viral haemorrhagic septicaemia virus genes as model. Fish and Shellfish Immunology, 1998, vol. 8, issue 4, pp. 271–286. https://doi.org/10.1006/fsim.1997.0133
  28. Hu Y.-H., Sun L. A bivalent Vibrio harveyi DNA vaccine induces strong protection in Japanese flounder (Paralichthys olivaceus). Vaccine, 2011, vol. 29, issue 26, pp. 4328–4333. https://doi.org/10.1016/j.vaccine.2011.04.021
  29. Jiao X. D., Zhang M., Hu Y. H., Sun L. Construction and evaluation of DNA vaccines encoding Edwardsiella tarda antigens. Vaccine, 2009, vol. 27, issue 38, pp. 5195–5202. https://doi.org/10.1016/j.vaccine.2009.06.071
  30. Kanellos T., Sylvester I. D., D’Mello F., Howard C. R., Mackie A., Dixon P. F., Chang K.-C., Ramstad A., Midtlyng P. J., Russell P. H. DNA vaccination can protect Cyprinus carpio against spring viraemia of carp virus. Vaccine, 2006, vol. 24, issue 23, pp. 4927–4933. https://doi.org/10.1016/j.vaccine.2006.03.062
  31. Kim M. S., Choi S. H., Kim K. H. Effect of G gene-deleted recombinant viral hemorrhagic septicemia virus (rVHSV-ΔD G) on the replication of wild type VHSV in a fish cell line and in olive flounder (Paralichthys olivaceus). Fish & Shellfish Immunology, 2016, vol. 54, pp. 598–601. https://doi.org/10.1016/j.fsi.2016.05.014
  32. Kim C. H., Johnson M. C., Drennan J. D., Simon B. E., Thomann E., Leong J. A. DNA vaccines encoding viral glycoproteins induce nonspecific immunity and Mx protein synthesis in fish. Journal of Virology, 2000, vol. 74, no. 15, pp. 7048–7054. https://doi.org/10.1128/JVI.74.15.7048-7054.2000
  33. Kumar S. R., Ahmed V. P. I., Sarathi M., Basha A. N., Hameed A. S. S. Immunological responses of Penaues monodon to DNA vaccine and its efficacy to protect shrimp against white spot syndrome virus (WSSV). Fish and Shellfish Immunology, 2008, vol. 24, issue 4, pp. 467–478. https://doi.org/10.1016/j.fsi.2008.01.004
  34. Kumar S. R., Parameswaran V., Ahmed V. P. I., Musthaq S. S., Hameed A. S. S. Protective efficiency of DNA vaccination in Asian seabass (Lates calcarifer) against Vibrio anguillarum. Fish and Shellfish Immunology, 2007, vol. 23, issue 2, pp. 316–326. https://doi.org/10.1016/j.fsi.2006.11.005
  35. Kurath G. Biotechnology and DNA vaccines for aquatic animals. Scientific and Technical Review of the Office International des Epizooties, 2008, vol. 27, no. 1, pp. 175–196. https://doi.org/10.20506/rst.27.1.1793
  36. Kwak J. S., Kim M. S., Kim K. H. Generation of a recombinant viral hemorrhagic septicemia virus (VHSV) expressing olive flounder (Paralichthys olivaceus) interferon-γ and its effects on type I interferon response and virulence. Fish & Shellfish Immunology, 2017, vol. 68, pp. 530–535. https://doi.org/10.1016/j.fsi.2017.07.052
  37. LaPatra S. E., Corbeil S., Jones G. R., Shewmaker W. D., Lorenzen N., Anderson E. D., Kurath G. Protection of rainbow trout against infectious hematopoietic necrosis virus four days after specific or semi-specific DNA vaccination. Vaccine, 2001, vol. 19, issue 28–29, pp. 4011–4019. https://doi.org/10.1016/S0264-410X(01)00113-X
  38. Liang H. Y., Wu Z. H., Jian J. C., Huang Y. C. Protection of red snapper (Lutjanus sanguineus) against Vibrio alginolyticus with a DNA vaccine containing flagellin flaA gene. Letters in Applied Microbiology, 2011, vol. 52, issue 2, pp. 156–161. https://doi.org/10.1111/j.1472-765X.2010.02981.x
  39. Liu R., Chen J., Li K., Zhang X. Identification and evaluation as a DNA vaccine candidate of a virulence-associated serine protease from a pathogenic Vibrio parahaemolyticus isolate. Fish and Shellfish Immunology, 2011. vol. 30, issue 16, pp. 1241–1248. https://doi.org/10.1016/j.fsi.2011.04.005
  40. Lorenzen N., Lorenzen E., Einer-Jensen K., Heppell J., Wu T., Davis H. Protective immunity to VHS in rainbow trout (Oncorhynchus mykiss, Walbaum) following DNA vaccination. Fish and Shellfish Immunology, 1998, vol. 8, no. 4, pp. 261–270. https://doi.org/10.1006/fsim.1997.0134
  41. Mikalsen A. B., Sindre H., Torgersen J., Rimstad E. Protective effects of a DNA vaccine expressing the infectious salmon anemia virus hemagglutinin-esterase in Atlantic salmon. Vaccine, 2005, vol. 23, issue 41, pp. 4895–4905. https://doi.org/10.1016/j.vaccine.2005.05.025
  42. Mikalsen A. B., Torgersen J., Aleström P., Hellemann A.-L., Koppang E.-O., Rimstad E. Protection of atlantic salmon Salmo salar against infectious pancreatic necrosis after DNA vaccination. Diseases of Aquatic Organisms, 2004, vol. 60, no. 1, pp. 11–20. https://doi.org/10.3354/dao060011
  43. Miquel A., Müller I., Ferrer P., Valenzuela P. D., Burzio L. O. Immunoresponse of Coho salmon immunized with a gene expression library from Piscirickettsia salmonis. Biological search, 2003, vol. 36, no. 3–4, pp. 313–323.
  44. Munang’andu H. M., Mugimba K. K., Byarugaba D. K., Mutoloki S., Evensen Ø. Current Advances on Virus Discovery and Diagnostic Role of Viral Metagenomics in Aquatic Organisms. Frontiers in Microbiology, 2017, vol. 8, article 406. https://doi.org/10.3389/fmicb.2017.00406
  45. Nakanishi T., Kiryu I., Ototake M. Development of a new vaccine delivery method for fish: percutaneous administration by immersion with application of a multiple puncture instrument. Vaccine, 2002, vol. 20, issue 31–32, pp. 3764–3769. https://doi.org/10.1016/S0264-410X(02)00291-8
  46. Nusbaum K. E., Smith B. F., DeInnocentes P., Bird R. C. Protective immunity induced by DNA vaccination of channel catfish with early and late transcripts of the channel catfish herpesvirus (IHV-1). Veterinary Immunology and Immunopathology, 2002, vol. 84, issue 3–4, pp. 151–168. https://doi.org/10.1016/S0165-2427(01)00399-3
  47. Oberg L. A., Wirkkula J., Mourich D., Leong J. C. Bacterially expressed nucleoprotein of infectious hematopoietic necrosis virus augments protective immunity induced by the glycoprotein vaccine in fish. Journal of Virology, 1991, vol. 65, no. 8, pp. 4486–4489.
  48. Pasnik D. J., Smith S. A. Immune and histopathologic responses of DNA-vaccinated hybrid striped bass Morone saxatilis x M. chrysops after acute Mycobacterium marinum infection. Diseases of Aquatic Organisms, 2006. vol. 73, no. 1, pp. 33–41. https://doi.org/10.3354/dao073033
  49. Pasnik D. J., Smith S. A. Immunogenic and protective effects of a DNA vaccine for Mycobacterium marinum in fish. Veterinary Immunology and Immunopathology, 2005, vol. 103, issue 3–4, pp. 195–206. https://doi.org/10.1016/j.vetimm.2004.08.017
  50. Plan K. P., LaPatra S. E. Advances in fish vaccine delivery. Developmental & Comparative Immunology, 2011, vol. 35, issue 12, pp. 1256–1262. https://doi.org/10.1016/j.dci.2011.03.007
  51. Priya T. A. J., Lin Y.-H., Wang Y.-C., Yang C.-S., Chang P.-S., Song Y.-L. Codon changed immobilization antigen (iAg), a potent DNA vaccine in fish against Cryptocaryon irritans infection. Vaccine, 2012, vol. 30, issue 5, pp. 893–903. https://doi.org/10.1016/j.vaccine.2011.11.102
  52. Seo J. Y., Kim K.-H., Kim S.-G., Oh M.-J., Nam S.-W., Kim Y.-T., Choi T.-J. Protection of flounder against hirame rhabdovirus (HIRRV) with a DNA vaccine containing the glycoprotein gene. Vaccine, 2006, vol. 24, issue 7, pp. 1009–1015. https://doi.org/10.1016/j.vaccine.2005.07.109
  53. Sommerset I., Lorenzen E., Lorenzen N., Bleie H., Nerland A. H. A DNA vaccine directed against a rainbow trout rhabdovirus induces early protection against a nodavirus challenge in turbot. Vaccine, 2003, vol. 21, issue 32, pp. 4661–4667. https://doi.org/10.1016/S0264-410X(03)00526-7
  54. Sun Y., Liu C.-S., Sun L. Construction and analysis of the immune effect of an Edwardsiella tarda DNA vaccine encoding a D15-like surface antigen. Fish and Shellfish Immunology, 2011, vol. 30, issue 1, pp. 273–279. https://doi.org/10.1016/j.fsi.2010.10.020
  55. Sun Y., Liu C.-S., Sun L. Identification of an Edwardsiella tarda surface antigen and analysis of its immunoprotective potential as a purified recombinant subunit vaccine and a surface-anchored subunit vaccine expressed by a fish commensal strain. Vaccine, 2010, vol. 28, issue 40, pp. 6603–6608. https://doi.org/10.1016/j.vaccine.2010.07.050
  56. Sun Y., Zhang M., Liu C.-S., Qiu R., Sun L. A divalent DNA vaccine based on Sia10 and OmpU induces cross protection against Streptococcus iniae and Vibrio anguillarum in Japanese flounder. Fish and Shellfish Immunology, 2012, vol. 32, issue 6, pp. 1216–1222. https://doi.org/10.1016/j.fsi.2012.03.024
  57. Takano T., Iwahori A., Hirono I., Aoki T. Development of a DNA vaccine against hirame rhabdovirus and analysis of the expression of immune-related genes after vaccination. Fish and Shellfish Immunology, 2004, vol. 17, issue 4, pp. 367–374. https://doi.org/10.1016/j.fsi.2004.04.012
  58. Tan C.-W., Jesudhasan P., Woo P. T. K. Towards a metalloprotease-DNA vaccine against piscine cryptobiosis caused by Cryptobia salmosotica. Parasitology Research, 2008, vol. 102, issue 2, pp. 265–275. https://doi.org/10.1007/s00436-007-0757-7
  59. Tian J., Sun X., Chen X., Yu J., Qu L., Wang L. The formulation and immunisation of oral poly (DL-lactide-co-glycolide) microcapsules containing a plasmid vaccine against lymphocystis disease virus in Japanese flounder (Paralichthys olivaceus). International Immunopharmacology, 2008, vol. 8, issue 6, pp. 900–908. https://doi.org/10.1016/j.intimp.2008.02.006
  60. Tian J., Yu J. Poly(lactic-co-glycolic acid) nanoparticles as candidate DNA vaccine carrier for oral immunization of Japanese flounder (Paralichthys olivaceus) against lymphocystis disease virus. Fish and Shellfish Immunology, 2011, vol. 30, issue 1, pp. 109–117. https://doi.org/10.1016/j.fsi.2010.09.016
  61. Tian J., Yu J., Sun X. Chitosan microspheres as candidate plasmid vaccine carrier for oral immunisation of Japanese flounder (Paralichthys olivaceus). Veterinary Immunology and Immunopathology, 2008, vol. 126, issue 3–4, pp. 220–229. https://doi.org/10.1016/j.vetimm.2008.07.002
  62. Tonheim T. C., Bøgwald J., Dalmo R. A. What happens to the DNA vaccine in fish? A review of current knowledge. Fish and Shellfish Immunology, 2008, vol. 25, issue 1–2, pp. 1–18. https://doi.org/10.1016/j.fsi.2008.03.007
  63. Traxler G. S., Anderson E., LaPatra S. E., Richard J., Shewmaker B., Kurath G. Naked DNA vaccination of Atlantic salmon Salmo salar against IHNV. Diseases of Aquatic Organisms, 1999, vol. 38, no. 3, pp. 183–190. https://doi.org/10.3354/dao038183
  64. United States Department of Agriculture. Available at: http://usda.mannlib.cornell.edu/usda/current/TrouProd/TrouProd-02-26-2018.pdf
  65. Vazquez-Juarez R. C., Gomez-Chiarri M., Barrera-Saldaña H., Hernandez-Saavedra N., Dumas S., Ascencio F. Evaluation of DNA vaccination of spotted sand bass (Paralabrax maculatofasciatus) with two major outer-membrane protein-encoding genes from Aeromonas veronii. Fish and Shellfish Immunology, 2005, vol. 19, issue 2, pp. 153–163. https://doi.org/10.1016/j.fsi.2004.12.007
  66. Wang Q., Chen J., Liu R., Jia J. Identification and evaluation of an outer membrane protein OmpU from a pathogenic Vibrio harveyi isolate as vaccine candidate in turbot (Scophthalmus maximus). Letters in Applied Microbiology, 2011, vol. 53, issue 1, pp. 22–29. https://doi.org/10.1111/j.1472-765X.2011.03062.x
  67. Wang D., Coscoy L., Zylberberg M., Avila P. C., Boushey H. A., Ganem D., DeRisi J. L. Microarray-based detection and genotyping of viral pathogens. Proceedings of the National Academy of Sciences of the USA, 2002, vol. 99, no. 24, pp. 15687–15692. https://doi.org/10.1073/pnas.242579699
  68. Wi G. R., Hwang J. Y., Kwon M.-G., Kim H. J., Kang H. A., Kim H.-J. Protective immunity against nervous necrosis virus in convict grouper Epinephelus septemfasciatus following vaccination with virus-like particles produced in yeast Saccharomyces cerevisiae. Veterinary Microbiology, 2015, vol. 177, issue 1–2, pp. 214–218. https://doi.org/10.1016/j.vetmic.2015.02.021
  69. Yang H., Chen J., Yang G., Zhang X.-H., Liu R., Xue X. Protection of Japanese flounder (Paralichthys olivaceus) against Vibrio anguillarum with a DNA vaccine containing the mutated zinc-metalloprotease gene. Vaccine, 2009, vol. 27, issue 15, pp. 2150–2155. https://doi.org/10.1016/j.vaccine.2009.01.101
  70. Yasuike M., Kondo H., Hirono I., Aoki T. Difference in Japanese flounder, Paralichthys olivaceus gene expression profile following hirame rhabdovirus (HIRRV) G and N protein DNA vaccination. Fish and Shellfish Immunology, 2007, vol. 23, issue 3, pp. 531–541. https://doi.org/10.1016/j.fsi.2006.12.006
  71. Yoshimizu M., Kasai H., Aoki T., Ototake M., Sakai M., Jung T.-S., Hikima J., Okamoto N., Sakamoto T., Ozaki A., Yazawa R. Prevention and treatment of diseases caused by fish pathogens. Fish diseases, Encyclopedia of Life Support Systems (EOLSS), 2016, pp. 56–62. Available at: https://oacis.repo.nii.ac.jp/index.php?action=pages_view_main
  72. Zhou Y. C., Huang H., Wang J., Zhang B., Su Y. Q. Vaccination of the grouper, Epinephalus awoara, against vibriosis using the ultrasonic technique. Aquaculture, 2002, vol. 203, issue 3–4, pp. 229–238. https://doi.org/10.1016/S0044-8486(01)00634-2

Download full text in PDF