Bìol. Tvarin, 2017, volume 19, issue 3, pp. 82–87


G.Ruban1, A. V. Yakoviichuk1, T. I. Galko1, O. A. Danchenko2

This email address is being protected from spambots. You need JavaScript enabled to view it.

1Melitopol State Pedagogical University named after Bohdan Khmelnytsky,
20 Hetmanska str., Melitopol 72311, Ukraine

2Tavria State Agrotechnological University,
18 B. Khmelnytsky Ave., Melitopol 72315, Ukraine

Features of influence of doubled dose of vitamin E in the diet of geese during pre-slaughter period on the quality of geese meat and its oxidative damage during its low-temperature storage were established. During the entire period of postnatal development, the geese in the control group were kept on a standard diet, balanced on exchange energy, protein and vitamins. The diet of the geese in the experimental group from 42 to 63 days differed by doubled up vitamin E content (40 mg/kg). Bird slaughter was carried out at 63-day old age. After the slaughter from the carcasses, the meat of the breast was cut out and frozen in a slow way to a temperature –18 °C. For the low-temperature storage, geese meat of two samples was used. The meat of the control sample was obtained from the geese of the control group, and the meat of the experimental sample was from the geese of the experimental group.

The intensity of lipid peroxidation processes in geese meat was evaluated by the content of peroxidation products which react with 2-thiobarbituric acid (TBАAP). The determination of these products was carried out in meat homogenates (TBAAPin) and on the initiation of peroxide oxidation of Fe2+ (TBAAPinit). In addition, the content of vitamins A, E and β-carotene was determined in geese meat.

It has been established that the introduction of vitamin E in the diet of geese in a dose of 40 mg/kg of feed during this period contributes to reliable inhibition of lipoperoxidation processes in their meat during low-temperature storage. The meat of these geese is characterized by a significantly higher content of vitamin E throughout the experiment and by 29.1 % higher content in β-carotene at the end of the experiment. Thus, the doubled dose of vitamin E before slaughter not only improves the quality of paired meat, but also inhibits its oxidative damage.


  1. Andreev A. Yu., Kushnareva Yu. E., Starkov A. A. Metabolism of reactive oxygen species in mitochondria. Biochemistry, 2005, vol. 70, no. 2, pp. 246–264. (in Russian)
  2. Antonov B. I., Antonov B. I., Yakovleva T. F., Deryabin V. I. Laboratory research in veterinary medicine: biochemical and microbiological. Moscow, Agropromizdat, 1991, 278 p. (in Russian)
  3. Azzi A., Stocker A. Vitamin E: non-antioxidant roles. Prog. lipid Res., 2000, vol.39, pp.231–255. https://doi.org/10.1016/S0163-7827(00)00006-0
  4. Azzi A., Gysin R., Kempná P., Munteanu A., Negis Y., Villacorta L., Visarius T., Zingg J. M. Vitamin E mediates cell signaling and regulation of gene expression. Ann. N.Y. Acad. Sci., 2004, vol. 1031, pp. 86–95. https://doi.org/10.1196/annals.1331.009
  5. Danchenko O. O., Paschenko J. P., Danchenko M. M., Zdorovtseva L. M. Support mechanisms prooxidant-antioxidant balance in the tissues of the liver of geese in conditions of hypo- and hyperoxia. Ukr. Biochem. Zh., 2012, vol. 84, no. 6, pp. 109–114. (in Ukrainian)
  6. Danchenko O. O., RubanG. V., Boroday V. P. The specificity of oxidative damage and changes in fatty acid composition of lipids meat geese during its low-temperature storage. Modern poultry, 2013, no.4, pp. 27–29. (in Ukrainian)
  7. Danchuk V. V. Danchuk O. V., Tsepko N. L. Oxidativ stress — pathology or adaptation? Livestock in Ukraine, 2004, no.4, pp. 21–23. (in Ukrainian)
  8. Decker E., Crum A. α-Tocopherol and meat quality. J. Food Sci., 1991, vol. 56, pp. 11–79.
  9. Dmitrieva M. A., Rozanev E. G. Quality of meat and free radicals. Meat Industry, 2006, no.12, pp. 52–54. (in Russian)
  10. Gunczak A. V., Ratych I. B., Andreeva L. V., Sirko Ja. M., Stojanowska G. M. Role of vitamin E in the poultry nutrition. The Animal Biology, 2007, vol. 9, no. 1–2, pp. 70–82. (in Ukrainian)
  11. Putilina F. E., Galkina O. V., Eshchenko N. D., Krosovska G.P. Free radical oxidation. A textbook. Moscow, Kolos, 2008, 172 p. (in Russian)
  12. Sakhatsky M. I., Ivko I. I., Ionov I. A., Melnik V. O., Karkach P. M., Reznikovsky V. K., Pydov V. Y., Chapligin E. M. Reference poultry. Ed. E. Sakhatsky. Kharkiv, 2001, 160 p. (in Ukrainian)
  13. Recommendations for the normalization of feeding poultry. Ed. Y. O. Ryabokon. Tags, Poultry Research Institute, 2005, 101 p. (in Ukrainian).
  14. Ruban G. V., Zdorovtseva L. M, Danchenko O. O. Effect of vitamin E on lipid changes in fatty acid composition of meat geese during its low-temperature storage. Poultry, 2012, vol. 68, pp. 391–396. (in Ukrainian)
  15. Łuczaj W., Gęgotek A., Skrzydlewska E. Antioxidants and HNE in redox homeostasis [Electronic resource]. Free Radic Biol Med., 2016. https://doi.org/10.1016/j.freeradbiomed.2016.11.033
  16. Traber M. G., LeonardS. W., Bobe G., Fu X., Saltzman E., GrusakM. A, Booth S. L. α-Tocopherol disappearance rates from plasma depend on lipid concentrations: studies using deuterium-labeled collard greens in younger and older adults. Am. J. Clin. Nutr., 2015, vol. 101, pp. 752–759. https://doi.org/10.3945/ajcn.114.100966
  17. Watts E. J., Shen Y., Lansky E. P., Nevo E., Bobe G., Traber M. G. High environmental stress yields greater tocotrienol content while changing vitamin E profiles of wild emmer wheat seeds. J. Med. Food., 2015, vol. 18, pp. 216–223. https://doi.org/10.1089/jmf.2014.0017
  18. Wu L., Guo X., Hartson S. D. Davis M. A. He H., Medeiros D. M., Wang W., Clarke S. L., Lucas E. A., Smith B. J., Lintig J., Lin D. Lack of β, β-carotene-9’, 10’-oxygenase 2 leads to hepatic mitochondrial dysfunction and cellular oxidative stress in mice [Electronic resource]. Mol. Nutr. Food Res., 2016. Available at: http://onlinelibrary.wiley.com/doi/10.1002/mnfr.201600576/full.
  19. Wu L., Guo X., Wang W., Medeiros D. M., Clarke S. L., Lucas E. A., Smith B. J. Molecular aspects of β, β-carotene-9’,10’-oxygenase 2 in carotenoid metabolism and diseases. Exp. Biol. Med. (Maywood), 2016, vol. 241, pp. 1879–1887. https://doi.org/10.1177/1535370216657900

Download full text in PDF format






WorldCat Logo