Bìol. Tvarin, 2017, volume 19, issue 3, pp. 9–17


V. S. Bityutskyy1, О. S. Tsekhmistrenko1, S. I. Tsekhmistrenko1, M. Y. Spyvack2, U. M. Shadura1

This email address is being protected from spambots. You need JavaScript enabled to view it.

1Bila Tserkva National Agrarian University,
8/1 Soborna sq., Bila Tserkva, Kyiv region, 09100, Ukraine, www.btsau.kiev.ua

2D. K. Zabolotny Institute of Microbiology and Virology,
154 Akademika Zabolotnoho str., Kyiv 03680, Ukraine, www.imv.kiev.ua

In recent years, nanotechnology wins key positions in various fields of knowledge thanks to the special provisions with nanoparticles, namely their size and physicochemical properties. High ability of metal nanoparticles to accumulate leads to their accumulation in plant and animal organisms by increasing the bioavailability, overcoming biobarriers, tying together nucleic acids and proteins.

The accumulation features of nanoparticles of metals in plants, the impact on germination and vegetation, metabolism and productivity are researched in the article. Data on the use of metal nanoparticles in animal feed as an antibiotics alternative to increase productivity are analyzed. It is established that the rare earth elements may intensify the exchange of proteins and other nutrients by stimulating hormones activity inducing the synthesis of metallothioneins and growing conversion ratio feed. The changes of prooxidant-oxidant status of animal blood by the use of drugs with nanoparticles of cerium dioxide and changes of homeostasis are established. The use of rare earth elements is positive for poultry egg production because of egg production intensification, their weight and rate of fertilization of eggs for hatching. The influence of nanoparticles on metal redox potential and processes of lipid peroxidation in animals is established. Nanodispersed ceria use as a promising nanobiomaterial for biological and medical applications and the need for further research to study all possible mechanisms of its biological activity are argued.


1. Abbas F., Jan T., Iqbal J., Haider M. S. Naqvi Abbas F. Fe doping induced enhancement in room temperature ferromagnetism and selective cytotoxicity of CeO2 nanoparticles. Current Applied Physics, 2015, vol. 15, no. 11, pp. 1428–1434. https://doi.org/10.1016/j.cap.2015.08.007
2. Adu O. A., Igbasan F. A., Adebiyi O. A. Effect of dietary rare earth element on performance and carcass characteristics of broiler. Journal of Sustainable Technology, 2011, vol. 2, pp. 118–126.
3. An J., Zhang M., Wang S., Tang J. Physical, chemical and microbiological changes in stored green asparagus spears as affected by coating of silver nanoparticles-PVP. LWT-Food Sci. Technol., 2008, vol. 41, pp. 1100–1107.
4. An J. P., Chen K. S. Effect of NdCl3 on membrane damnification induced by pervasion intimidation and content of ABA. Journal of Chinese Rare Earth Society, 1994, vol. 12, pp. 348–351.
5. Batley G. E., Kirby J. K., McLaughlin M. J. Fate and Risks of Nanomaterials in Aquatic and Terrestrial Environments. Acc. Chem. Res., 2013, vol. 46 (3), pp. 854–862. https://doi.org/10.1021/ar2003368
6. Bölükbaşi S. C., Al-Sagan A. A., Erhan M. K. Effects of cerium oxide supplementation to laying hen diets on performance, egg quality, some antioxidant enzymes in serum and lipid oxidation in egg yolk. Journal of Animal Physiology and Animal Nutrition, 2016, vol. 100 (4), pp. 686–693. https://doi.org/10.1111/jpn.12429
7. Borisevich V. B., Kaplunenko V. G., Kosynov N. V. Nanomaterials and Nanotechnology in veterinary practice. Kyiv, Publishing House “Avicenna”, 2012, 512 p. (in Russian)
8. Bovsunovsky A. M., Vyaly S. O., Kaplunenko V. G., Kosinov N. V. Nanotechnology as the driving force of the agrarian revolution. The Grain, 2008, no. 11 (31), pp. 80–83. (in Russian)
9. Cassee F. R., van Balen E. C., Singh C. Nanobiotechnology: silica breaks through in plants. Nature Nanotechnol., 2007, vol. 2, pp. 272–273. https://doi.org/10.1038/nnano.2007.118
10. Chekman I. S. Nanoparticles: properties and prospects of application. Ukr. Biochemical Journal, 2009, vol. 81, no. 1, pp. 122–129. (in Ukrainian)
11. Chekman I. S. Pharmacological and Pharmaceutical bases of nanomaterials. Medical business, 2010, no. 1–2, pp. 3–9. (in Ukrainian)
12. Chen H., Xiong B. A study of feeding new type organic Rare Earth Element compound (RCT-3) to pigs and chicks. Feed Research, 1994, vol. 8, pp. 4–7.
13. Cornelis G. C. G., Ryan B., McLaughlin M. J. Solubility and Batch Retention of CeO(2) Nanoparticles in Soils. Environ. Sci. Technol., 2011, vol. 45 (7), pp. 2777–2782. https://doi.org/10.1021/es103769k
14. Danov K. D., Kralchevsky P. A., Boneva M. P. Electroding force acting on solid particles at a fluid interface. Langmuir, 2004, vol. 20 (15), pp. 6139–6151. https://doi.org/10.1021/la0497090
15. Demchenko O. A., Yuzvenko L. V., Shcherbakov A. B., Boyko A. L. Cerium dioxide nanoparticles as a stimulant plant growth and development of buckwheat. Proceedings of XI Ukrainian biochemical congress, Kyiv, 2014, p. 186. (in Ukrainian)
16. Diegoli S., Manciulea A. L., Begum S. Interaction between manufactured gold nanoparticles and naturally occurring organic macromolecules. Sci. Total Environ., 2008, vol. 402 (1), pp. 51–61. https://doi.org/10.1016/j.scitotenv.2008.04.023
17. Dittmayer R., Keim W., Kreysa G. Chemische Technik — Prozesse und Produkte Band 6b Metalle. Wiley-VCH Verlag, Weinheim, 2006, vol. 5, pp. 147–208.
18. Duan S., Zhao H., Chen K., Duan S. A Study of feeding Rare Earth Elements to broiler type breeding bird. Livestock and Poultry Industry, 1998, vol. 2, pp. 16–17.
19. Evans C. H. Toxicology and pharmacology of the lanthanides. In: E. Frieden (ed.). Biochemistry of the Lanthanides, Plenum Press, New York and London, 1990, vol. 5. pp. 340–342. https://doi.org/10.1007/978-1-4684-8748-0_8
20. Gardea-Torresdey J. L., Rico C. M., White J. C. Trophic Transfer, Transformation, and Impact of Engineered Nanomaterials in Terrestrial Environments. Environ. Sci. Technol., 2014, vol. 48 (5), pp. 2526–2540. https://doi.org/10.1021/es4050665
21. Gong Z. A study of feeding Rare Earth Elements to broiler-type breeding bird. Chinese Poultry, 1996, vol. 7, pp. 43.
22. He M. L., Chang J., Arnold R. Studies on the effect of rare earth elements in piglets. Mengen und Spurenelemente, 19. Arbeitstagung, 3. und 4. Dezember, 1999, Jena, Germany.
23. He M. L., Wehr U., Rambeck W. A. Effect of low doses of dietary rare earth elements on growth performance of broilers. Journal of Animal Physiology and Animal Nutrition, 2010, vol. 94, pp. 86–92. https://doi.org/10.1111/j.1439-0396.2008.00884.x
24. He Y., Xue L. Biological effects of rare earth elements and their action mechanisms. Ying Yong Sheng Tai Xue Bao, 2005, vol. 16, pp. 1983–1989.
25. Hernandez-Viezcas J. A., Castillo-Michel H., Andrews J. C. Synchrotron X-ray Fluorescence Mapping and Speciation of CeO2 and ZnO Nanoparticles in Soil Cultivated Soybean (Glycine max), ACS. Nano, 2013, vol. 7 (2), pp. 1415–1423. https://doi.org/10.1021/nn305196q
26. Hu Z., Richter H., Sparovek G., Schug E. Physiological and biochemical effects of rare earth elements on plants and their agricultural significance: a review. Journal of Plant Nutrition, 2004, vol. 12, pp. 183–220. https://doi.org/10.1081/PLN-120027555
27. Husen A., Siddiqi K. S. Phytosynthesis of nanoparticles: concept, controversy and application. Nanoscale Research Letters, 2014, vol. 9, pp. 229–253. https://doi.org/10.1186/1556-276X-9-229
28. Ivanov V. K., Shcherbakov A. B., Baranchykov A. E., Kozik V. V. Nanocrystallized cerium dioxide: properties, receipt, and Application. Tomsk, Izd. Tom. University Press, 2013, 284 p. (in Russian)
29. Jabeen R., Ahmad A., Iqbal M. Phytoremediation of heavy metals: physiological and molecular aspects. Bot. Rev., 2009, vol. 75, pp. 339–364. https://doi.org/10.1007/s12229-009-9036-x
30. Karakoti A. S., Munusamy P. Preparation and characterization challenges to understanding environmental and biological impacts of ceria nanoparticles. Surf. Interface Anal., 2012, vol. 44 (8), pp. 882–889. https://doi.org/10.1002/sia.5006
31. Kawagoe M., Hirasawa F., Wang S. C. Orally administrated rare earth element cerium induces metallothionein synthesis and increases glutathione in the mouse liver. Life Sciences, 2005, vol. 77, pp. 922–937. https://doi.org/10.1016/j.lfs.2005.02.004
32. Klochkov V. K., Malyshenko A. I., Sedyh O. O., Malyukin Yu. V. Wet-Chemical Synthesis and Characterization of luminescent Colloidal Nanoparticles: ReVO4:Eu3+ (Re=La, Gd, Y) with rodlike and spindle-like shape. Functional materials, 2011, no. 1, pp. 111–115.
33. Koshevoy V. P., Fedorenko S. J., Naumenko S. V. The use of SeO2 nanoparticles and GdEuVO4 together with Kaplaestrole for cows gonads rehabilitation. Veterinary Medicine of Ukraine, 2014, vol. 7 (221), pp. 24–27. (in Ukrainian)
34. Koshevoy V. P., Onishchenko O. V., Klochkov V. K., Malyukyn Y. V. Deficit of maternal immunoglobulins in cows with mastisis destruction: prediction and prevention techniques. Veterinary Medicine of Ukraine, 2015, vol. 3 (229), pp. 17–22. (in Ukrainian)
35. Kralchevsky P. A., Nagayama K. Capillary interactions between particles bound to interfaces, liquid films and biomembranes. Adv. Collodion Interfaces Sci., 2000, vol. 85 (2–3), pp. 145–192. https://doi.org/10.1016/S0001-8686(99)00016-0
36. Kumar R., Roopan S. M., Prabhakarn A. Agricultural waste Annona squamosa peel extract: biosynthesis of silver nanoparticles. Spectro Acta A Mol. Biomol. Spectrosc., 2012, vol. 90, pp. 173–176. https://doi.org/10.1016/j.saa.2012.01.029
37. Lopez-Moreno M. L., Rosa G., Hernandez-Viezcas J. A. X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species. J. Agric. Food Chem., 2010, vol. 58 (6), pp. 3689–3693. https://doi.org/10.1021/jf904472e
38. Lowry G. V., Hotze E. M., Bernhardt E. S. Environmental Occurrences, Behavior, Fate, and Ecological Effects of Nanomaterials: An Introduction to the Special Series. J. Environ. Qual., 2010, vol. 39 (6), pp. 1867–1874. https://doi.org/10.2134/jeq2010.0297
39. Ma Y., Zhang P., Zhang Z. Origin of the different phytotoxicity and biotransformation of cerium and lanthanum oxide nanoparticles in cucumber. Nanotoxicology, 2015, vol. 9, I. 2, pp. 262–270.
40. Madler L. Stark W. J., Pratsinis S. E. Flame-made ceria nanoparticles. J. Mater. Res., 2002, vol. 17 (6), pp. 1356–1362. https://doi.org/10.1557/JMR.2002.0202
41. Majumdar S., Almeida I.C., Arigi E. A. Environmental effects of nanoceria on seed production of common bean (Phaseolus vulgaris). A proteomic analysis. Environ. Sci. Technol., 2015, vol. 49, pp. 13283–13293. https://doi.org/10.1021/acs.est.5b03452
42. Majumdar S., Peralta-Videa J. R., Bandyopadhyay S. Exposure of cerium oxide nanoparticles to kidney bean shows disturbance in the plant defense mechanisms. J. Hazard. Mater., 2014, vol. 278, pp. 279–287. https://doi.org/10.1016/j.jhazmat.2014.06.009
43. McGrath S. P., Zhao F. J. Phytoextraction of metals and metalloids from contaminated soils. Curr. Opin. Biotechnol., 2003, vol. 14, pp. 277–282. https://doi.org/10.1016/S0958-1669(03)00060-0
44. Miralles P., Church T. L., Harris A. T. Toxicity, Uptake, and Translocation of Engineered Nanomaterials in Vascular plants. Environ. Sci. Technol., 2012, vol. 46 (17), pp. 9224–9239. https://doi.org/10.1021/es202995d
45. Monica R. C, Cremonini R. Nanoparticles and higher plants. Caryologia, 2009, vol. 62, pp. 161–165. https://doi.org/10.1080/00087114.2004.10589681
46. Morales M. I., Rico C. M., Hernandez-Viezcas J. A. Toxicity assessment of cerium oxide nanoparticles in cilantro (Coriandrum sativum L.) plants grown in organic soil. J. Agric. Food Chem., 2013, vol. 61, pp. 6224–6230. https://doi.org/10.1021/jf401628v
47. Mykytyuk M. V. Nanoparticles and prospects of their application in biology and medicine. Problems of Ecology and Medicine, 2011, vol. 15, no. 5–6, pp. 41–49. (in Ukrainian)
48. Nair R., Varghese S. H., Nair B. G. Nanoparticulate material delivery to plants. Plant Sci., 2010, vol. 179, pp. 154–163. https://doi.org/10.1016/j.plantsci.2010.04.012
49. Nesli S., Kokini J. L. Nanotechnology and its applications in the food sector. Trends in Biotechnology, 2009, vol. 27, no. 2, pp. 82–89. https://doi.org/10.1016/j.tibtech.2008.10.010
50. Nisha S. N., Aysha O. S., Rahaman J. S. N. Lemon peels mediated synthesis of silver nanoparticles and its antidermatophytic activity. Spectro Acta A Mol. Biomol. Spectrosc., 2014, vol. 124, pp. 194–198. https://doi.org/10.1016/j.saa.2013.12.019
51. Ou X., Guo Z., Wang J. The effects of rare earth element additive in feed on piglets. Livestock Poultry Industry, 2000, vol. 4, pp. 21–22.
52. Park H. J., Kim S. H., Kim H. J., Choi S. H. A new composition of nanosized silica-silver for control of various plant diseases. Plant Patho., 2007, vol. 22, pp. 295–302. https://doi.org/10.5423/PPJ.2006.22.3.295
53. Petersen E. J., Henry T. B., Zhao J. Identification and avoidance of potential artifacts and misinterpretations in nanomaterial ecotoxicity measurements. Environ. Sci. Technol., 2014, vol. 48 (8), pp. 4226–4246. https://doi.org/10.1021/es4052999
54. Priestera J. H., Gea Y., Mielkea R. E. Soybean susceptibility to manufactured nanomaterial’s with evidence for food quality and soil fertility interruption. Proc. Natl. Acad. Sci. USA, 2012.
55. Prodanchuk N. G. Balan G. M. Nanotoxicology: the state and prospects of research. Contemporary Problems of Toxicology, 2009, no. 3–4, pp. 4–18. (in Russian)
56. Ravikumar S., Gokulakrishnan R. The Inhibitory Effect of Metal Oxide Nanoparticles against Poultry Pathogens. International Journal of Pharmaceutical Sciences and Drug Research, 2012, vol. 4 (2), pp. 157–159.
57. Rico C. M., Hong J., Morales M. I. Effect of cerium oxide nanoparticles on rice: a study involving the antioxidant defense system and in vivo fluorescence imaging. Environ. Sci. Technol., 2013, vol. 47 (11), pp. 5635–5642. https://doi.org/10.1021/es401032m
58. Rico C. M., Majumdar S., Duarte-Gardea M. Interaction of nanoparticles with edible plants and their possible implications in the food chain. J. Agric. Food Chem., 2011, vol. 59 (8), pp. 3485–3498. https://doi.org/10.1021/jf104517j
59. Rohder L. A., Brandt T., Sigg L., Behra R. Influence of agglomeration of cerium oxide nanoparticles and speciation of cerium(III) on short term effects to the green algae Chlamydomonas reinhardtii. Aquat. Toxicol., 2014, vol. 152, pp. 121–130. https://doi.org/10.1016/j.aquatox.2014.03.027
60. Roopan S. M., Bharathi A., Prabhakarn A. Efficient phytosynthesis and structural characterization of rutile TiO2 nanoparticles using. Annona squamosa peel extract. Spectro Acta A Mol. Biomol. Spectrosc., 2012, vol. 98, pp. 86–90. https://doi.org/10.1016/j.saa.2012.08.055
61. Schwabe F., Schulin R., Rupper P. Dissolution and transformation of cerium oxide nanoparticles in plant growth media. J. Nanopart. Res., 2014, vol. 16, pp. 2668. https://doi.org/10.1007/s11051-014-2668-8
62. Schwabe F., Tanner S., Schulin R. Dissolved cerium contributes to uptake of Ce in the presence of differently sized CeO2-nanoparticles by three crop plants. Metallomics, 2015, vol. 7, pp. 466–477. https://doi.org/10.1039/C4MT00343H
63. Shadura Y. M., Bityutskyy V. S., Spyvack M. J. Biochemical parameters and productive qualities of hens by using cerium dioxide nanoparticles. Technology of production and processing of livestock products, 2015, no. 2 (120), pp. 174–177. (in Ukrainian)
64. Shadura Y. M., Bityutskyy V. S., Spyvack M. J. Pre-clinical studies of acute toxicity of nanocrystalline cerium dioxide. Bulletin ZHNAEU, 2015, vol. 2 (50), no. 1, pp. 358–363. (in Ukrainian)
65. Shah V., Belozerova I. Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air Soil Pollut., 2009, vol. 197, pp. 143–148. https://doi.org/10.1007/s11270-008-9797-6
66. Shcherbakov A. B., Ivanova O. S., Spivak N. Y. Synthesis and biomedical applications of nanodispersed cerium dioxide. Tomsk, Publishing House of Tomsk State University, 2016, 476 p. (in Russian)
67. Shcherbakov A. B., Zholobak N. M., Ivanov V. K. Nanomaterials on cerium dioxide based: Using properties and prospects in biology and medicine. Biotechnology, 2011, vol. 4, no. 1, pp. 9–28. (in Russian)
68. Singh S., Dosani T., Karakoti A. S. A phosphate-dependent shift in redox state of cerium oxide nanoparticles and its effects on catalytic properties. Biomaterials, 2011, vol. 32 (28), pp. 6745–6753. https://doi.org/10.1016/j.biomaterials.2011.05.073
69. Sitar O.V., Novitsky N. V., Taran N. Y. Nanotechnology in modern agriculture. Physics living, 2010, vol. 18, no. 3, pp. 113–116. (in Ukrainian)
70. Song J. Y., Kim B. S. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst. Eng., 2009, vol. 32, pp. 79–84. https://doi.org/10.1007/s00449-008-0224-6
71. Spyvack M. J., Demchenko O. A., Zholobak N. M. Effect of nanocrystalline cerium dioxide on quail egg productivity. Modern poultry, 2013, no. 3 (124), pp. 22–24. (in Ukrainian)
72. Spyvack M. J., Oksamitny V. M., Demchenko O. A. Effect of cerium dioxide nanoparticles to the rate of growth and feed intake youngsters quail. Veterinary Medicine, 2013, no. 97, pp. 470–472. (in Ukrainian)
74. Thill A., Zeyons O., Spalla O. Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. Environ. Sci. Technol., 2006, vol. 40, pp. 6151–6156. https://doi.org/10.1021/es060999b
75. Trujillo-Reyes J., Vilchis-Nestor A. R., Majumdar S. Citric acid modifies surface properties of commercial CeO2 nanoparticles reducing their toxicity and cerium uptake in radish (Raphanus sativus) seedlings. J. Hazard. Mater., 2013, vol. 263, pp. 677–684. https://doi.org/10.1016/j.jhazmat.2013.10.030
76. US EPA (US Environmental Protection Agency): Ecological Effects Test Guidelines. Seed Germination. Root Elongation Toxicity Test. OPPTS 850.4200. Washington, D.C, US EPA; 1996.
77. Walser T., Limbach L. K., Brogioli R. Persistence of engineered nanoparticles in a municipal solid-waste incineration plant. Nat. Nanotechnol., 2012, vol. 7 (8), pp. 520–524. https://doi.org/10.1038/nnano.2012.64
78. Wang B., Feng W., Zhao Y., Chai Z. Metallomics insights for in vivo studies of metal based nanomaterials. Metallomics, 2013, vol. 5 (7), pp. 793–803. https://doi.org/10.1039/c3mt00093a
79. Wang H., Sun H., Chen Y., Wang X. The bioaccumulation of rare earth elements in the internal organs of fish and their effect on the activities of enzymes in liver. China Environmental Science, 1999, vol. 19, pp. 141–144.
80. Wang M. Q., Xu Z. R. Effect of supplemental lanthanum on the growth performance of pigs. Asian-Australian Journal of Animal Science, 2003, vol. 16, pp. 1360–1363. https://doi.org/10.5713/ajas.2003.1360
81. Weinstein J., Dreher K. Exposure, Health and Ecological Effects Review of Engineered Nanoscale Cerium and Cerium Oxide Associated with its Use as a Fuel Additive. Crit. Rev. Toxicol., 2011, vol. 41 (3), pp. 213–229. https://doi.org/10.3109/10408444.2010.529105
82. Wu J., Zhang Z., Yan J. An initial study on effect of adding rare earth element on productivity of egg laying breeder hens. NingXia Science and Technology of Farming and Forestry, 1994, vol. 4, pp. 36–38.
83. Xie J., Wang Z. The effect of organic rare-earth compounds on production performance of chicken. In: 2nd International Symposium on Trace Elements and Food Chain, Wuhan, China, 1998, 12–15 November, p. 74.
84. Xie K., Xing Y., Zhang J. Effects of rare earth elements on growth of broilers. Research of Agricultural Modernization (Chinese), 1991, vol. 12, pp. 50–54.
85. Xu X., Xia H., Rui G. Effect of lanthanum on secretion of gastric acid in stomach of isolated mice. Journal of Rare Earths, 2004, vol. 22, p. 427.
86. Yang Z., Dong M., Mao C. Effects of rare earth elements on serum parameters in broiler. Gansu Animal Science and Veterinary medicine, 1992, vol. 22, pp. 7–8.
87. Zhang A., Li X., Tian P., Liu Y. A study of feeding Rare Earth Elements to laying anaphase hens. Journal of Husbandry and Veterinary, 1996, vol. 15, pp. 9–10.
88. Zhang L., Fang M. Nanomaterial’s in pollution trace detection and environmental improvement. Nano Today, 2010, vol. 5, pp. 128–142. https://doi.org/10.1016/j.nantod.2010.03.002
89. Zhang P., Ma Y. H. Biotransformation of Ceria Nanoparticles in Cucumber Plants. ACS Nano, 2012, vol. 6 (11), pp. 9943–9950. https://doi.org/10.1021/nn303543n
90. Zhang W., Ebbs S. D., Musante C. Uptake and accumulation of bulk and nanosized cerium oxide particles and ionic cerium by radish (Raphanus sativus L.). J. Agric. Food Chem., 2015, vol. 63, pp. 382–390. https://doi.org/10.1021/jf5052442
91. Zhang Z., He X., Zhang H. Uptake and distribution of ceria nanoparticles in cucumber plants. Metallomics, 2011, vol. 3, pp. 816–822. https://doi.org/10.1039/c1mt00049g
92. Zhao L. J., Peralta-Videa J. R., Varela-Ramirez A. Effect of surface coating and organic matter on the uptake of CeO2 NPs by corn plants grown in soil: Insight into the uptake mechanism. J. Hazard. Mater., 2012, vol. 225, pp. 131–138. https://doi.org/10.1016/j.jhazmat.2012.05.008
93. Zhao L. J., Sun Y. P., Hernandez-Viezcas J. A. Influence of CeO2 and ZnO Nanoparticles on Cucumber Physiological Markers and Bioaccumulation of Ce and Zn: A Life Cycle Study. J. Agric. Food Chem., 2013, vol. 61 (49), pp. 11945–11951. https://doi.org/10.1021/jf404328e
94. Zheng L., Hong F., Lu S., Liu C. Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Element Res., 2005, vol. 104, pp. 83–91. https://doi.org/10.1385/BTER:104:1:083
95. Zohravi M. effect of rare earth elements on growth performance, Tibia mineralization and blood serum of Japanese quails. Dissertation der tiermedizinischen Doktorwürde der tiermedizinischen Fakultät der Ludwig-Maximilians-Universität München, 2006.

Download full text in PDF format






WorldCat Logo