Bìol. Tvarin, 2019, volume 21, issue 4, pp. 9–17


S. V. Buriachenko, B. T. Stegniy

This email address is being protected from spambots. You need JavaScript enabled to view it.

NSC Institute of Experimental and Clinical Veterinary Medicine,
83 Pushkinska str., Kharkiv 61023, Ukraine

The epizootic situation of avian influenza in birds and humans in Ukraine, caused by subtypes A H1N1 and H7N9 is being reviewed. A comparative analysis of the existing methods for diagnosing avian influenza in birds and humans and their suitability is shown, and the variability of avian influenza genetic markers in birds and humans is determined. An epizootic situation on the prevalence of avian influenza in the world and Ukraine is presented, various methods for diagnosing avian influenza virus in comparison are analyzed, the variability of genetic markers of avian influenza in the two subtypes is analyzed. It is shown that the natural reservoir of the virus and the cause of the spread of the epizootic are migratory waterfowl, which, due to their natural resistance, are the least susceptible to infection and can travel long distances during migration. According to the literature, some strains of the avian influenza virus, in particular H1N1 and H7N9, are unsafe for humans and often lead to death. Research data obtained from diagnostic or biological material must be confirmed by the specificity of the method and not only molecular — biological to establish their reliability. There is a need to quickly obtain research results. For successful measures that will lead to a reduction in mortality and reduce the risk of spreading the infection, it is necessary to conduct regular monitoring of the foci of infection, epidemics, as well as its timely diagnosis. Polymerase chain reaction (PCR), which is accepted in many laboratories around the world, is of great practical importance for the diagnosis of avian influenza and other infectious diseases. However, this method requires the use of expensive equipment and consumables and for many laboratories it is an expensive and not a cost-effective method.


  1. Akanina D. A. Development of diagnostic tools for high virulent strain of influenza A subtype H5N1. Diss. cand. biol. sci., Moscow, 2014, 161 p. Available at: http://docplayer.ru/55287268-Peoples-Friendship-University-of-Russia-Akanina-Daria-Sergeevna-development-of-diagnostics-highly-virulent-strain-virus-influenza-a-subtype-n5n1.html.
  2. Bakulov I. A., Kotljarov V. M., Donchenko A. S., Huhorov I. Ju., Ternovaja S. F., Knize A. V. Particularly dangerous animal diseases. A reference guide. Novosibirsk, Pokrov, 2002, 184 p.
  3. Belousova R. V., Trocenko N. I., Preobrazhenskaya Je. A. Workshop on Veterinary Virology. Moscow, Kolos, 2006, 248 p. (in Russian)
  4. Brownlee G. G., Fodor E. The predicted antigenicity of the haemagglutinin of the 1918 Spanish influenza pandemic suggests an avian origin. Philosophical Transactions of the Royal Society B, Biological sciences, 2001, vol. 356, issue 1416, pp. 1871–1876. https://doi.org/10.1098/rstb.2001.1001
  5. Capua I. Marangon S. Control and prevention of Avian influenza in an evolving scenario. Vaccine, 2007, vol. 25, issue 30, pp. 5645–5652. https://doi.org/10.1016/j.vaccine.2006.10.053
  6. Capua I., Marangon S., dalla Pozza M., Terregino C., Cattoli G. Avian Influenza in Italy 1997–2001. Avian Diseases, 2003, vol. 47, issue 3, pp. 839–843. https://doi.org/10.1637/0005-2086-47.s3.839
  7. Gerilovich A. P., Simonenko S. I., Bolotin V. I., Solodyankin O. S. Development of a positive control sample of the hemagglutinin gene of avian influenza viruses subtype N7 of the European genotype based on recombinant DNA. Veterinary medicine: an interdepartmental thematic scientific collection H., 2009, vol. 92, pp. 113–119. (in Ukrainian)
  8. Gerilovich A. P., Stegniy B. T., Simonenko S. I. Creation of indicators for highly pathogenic influenza and Newcastle disease, as well as identification of isolates of N1-, N5- and N7-subtypes. Materials of V International veterinary congress on poultry farming, 2007, pp. 91–95.
  9. Gerilovich A. P., Stegniy B. T., Symonenko S. I. Development of avian influenza virus detection protocol for RNA European of type H7. XVI World Veterinary Poultry Association Congress: Book of abstracts, Marrakesh (Morocco), 2009, P1–A1.
  10. Golovko A. N. (ed.), Ushkalov V. A., Skrypnik V. G., Stegniy B. T. Microbiological and virological research methods in veterinary medicine. A reference guide. Kharkiv, NTMT, 2007, 512 p. (in Russian)
  11. Govorkova E. A., Leneva I. A., Goloubeva O. G., Bush K., Webster R. G. Comparison of efficacies of RWJ-270201, Zanamivir, and Oseltamivir against H5N1, H9N2, and other avian influenza viruses. Antimicrobial Agents and Chemotherapy, 2001, vol. 45, issue 10, pp. 2723–2732. https://doi.org/10.1128/AAC.45.10.2723-2732.2001
  12. Highly pathogenic avian influenza. In: Manual of Standards for Diagnostic Tests and Vaccines. 2009.
  13. Ito T., Couceiro J. N., Kelm S., Baum L. G., Krauss S., Castrucci M. R., Donatelli I., Kida H., Paulson J. C., Webster R. G., Kawaoka Y. Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. Journal of Virology, 1998, vol. 72, issue 9, pp. 7367–7373. https://doi.org/10.1128/JVI.72.9.7367-7373.1998
  14. Ji J., Xie Q. M., Chen C. Y., Bai S. W., Zou L. S., Zuo K. J., Cao Y. C., Xue C. Y., Ma J. Y., Bi Y. Z. Molecular detection of Muscovy duck parvovirus by loop-mediated isothermal amplification assay. Poultry Science, 2010, vol. 89, issue 3, pp. 477–483. https://doi.org/10.3382/ps.2009-00527
  1. Li K. S., K Xu. M., Peiris J. S. M., Poon L. L. M., Yu K. Z., Yuen K. Y., Shortridge K. F., Webster R. G., Guan Y. Characterization of H9 subtype influenza viruses from the ducks of Southern China: a candidate for the next influenza pandemic in humans? Journal of Virology, 2003, vol. 77, issue 12, pp. 6988–6994. https://doi.org/10.1128/JVI.77.12.6988-6994.2003
  2. Matrosovich M., Zhou N., Kawaoka Y., Webster R. The surface glycoproteins of H5 influenza viruses isolated from humans, chickens, and wild aquatic birds have distinguishable properties. Journal of Virology, 1999, vol. 73, issue 2, pp. 1146–1155. https://doi.org/10.1128/JVI.73.2.1146-1155.1999
  3. Perdue M. L., Suarez D. L. Structural features of the avian influenza virus hemagglutinin that influence virulence. Veterinary Microbiology, 2000, vol. 74, issue 1–2, pp. 77–86. https://doi.org/10.1016/S0378-1135(00)00168-1
  4. Postoienko V. O., Sorochinsky B. V., Sapachova M. A., Karpulenko M. S., Katsimon V. V., Gerilovich A. P. Optimization of conduct isotermal amplification of nucleic acids of avian influenza virus H5N1. Scientific and Technical Bulletin, Lviv, 2013, vol. 14, issue 3–4, pp. 325–330. Available at: http://www.scivp.lviv.ua/images/files/Naukovo_tekhnichnyy_byuleten/NTB_2013_14_3_4/61.pdf (in Ukrainian)
  5. Pryskoka V. A., Zagrebelny V. O., Mezhensky A. O., Nevolko O. M., Harkavenko T. O., Kyivska H. V. Diagnosis of animal infectious diseases: theory and practice. A monograph. Kyiv, DNDILDVSE, 2014, 454 p. (in Ukrainian)
  6. Ryan-Poirier K. A., Kawaoka Y. Distinct glycoprotein inhibitors of influenza A virus in different animal sera. Journal of Virology, 1991, vol. 65, issue 1, pp. 389–395. https://doi.org/10.1128/JVI.65.1.389-395.1991
  7. Shivakoti S., Ito H., Murase T., Ono E., Takakuwa N., Yamashiro T., Otsuki O., Ito T. Development of reverse transcription-loop-mediatedisothermal amplification (RT-LAMP) assay for detection of avian influenza viruses in field specimens. Journal of Veterinary Medical Science, 2010, vol. 72, issue 4, pp. 519–523. https://doi.org/10.1292/jvms.09-0473
  8. Sidoti F., Rizzo F., Costa C., Astegiano S., Curtoni A., Mandola M. L., Cavallo R., Bergallo M. Development of real time RT-PCR assays for detection of type A influenza virus and for subtyping of avian H5 and H7 hemagglutinin subtypes. Molecular Biotechnology, 2010, vol. 44, issue 1, pp. 41–50. https://doi.org/10.1007/s12033-009-9211-7
  9. Simonenko S. I., Stegniy B. T., Gerilovich A. P. Development of a method for detecting RNA of highly pathogenic avian influenza subtype N7 of the American genotype using polymerase chain reaction and study of intraspecific features. Scientific principles of the production of veterinary biological preparations: materials of a scientific-practical conference, Shhelkovo, 2009, pp. 319–323. (in Russian)
  10. Timin A. S. Comparison of influenza A virus inhibition in vitro. Available at: https://www.researchgate.net/publication/321431202_Comparison_of_influenza_A_virus_inhibition_in_vitro.

Download full text in PDF






WorldCat Logo