Bìol. Tvarin. 2022; 24 (2): 14–20.
Received 12.01.2022 ▪ Accepted 12.05.2022 ▪ Published online 01.07.2022

Immunogram indices in seropositive and seronegative cats for Toxoplasma gondii

VKusturov, M. Broshkov

This email address is being protected from spambots. You need JavaScript enabled to view it.

Odesa State Agrarian University,
13 Panteleimonivska str., Odesa, 65012, Ukraine

The article presents the data of immunogram studies in seropositive and seronegative for Toxoplasma gondii cats and the dependence of the absolute number of immunocompetent cells on their housing conditions. The blood from domestic and stray cats aged 3 to 5 years in which IgG to T. gondii was detected during a serological study was used in the study. During analyzes of the average values of seropositive (SP) cats it was detected that 10 animals (22%) had sufficiently high IgG titers of 3.24±0.835 (P≤0.05) and only 5 cats (11%) can be considered as animals that did not come into contact with the causative agent of toxoplasmosis. Neutrophils, as immunoregulatory cells, are among the first to encounter and become infected with Toxoplasma after the parasite crosses the intestinal epithelium. Determination of phagocytic activity of neutrophils showed that in the SP stray cats this indicator is 2 times lower than in the SP domestic cats and more than 4.0 times in the seronegative (SN) domestic cats. Analysis of the absolute content of lymphocytes and their T-subpopulation in the blood of different cats’ groups showed that in the SP stray cats, these indicators were lower. It is a proven fact that in order to control the adequate immune response in animals, it is extremely important not only the quantitative value of the immunoregulatory cells’ population, but also the ratio between them. The obtained results indicate that among homeless animals the seropositivity for toxoplasmosis is twice that of domestic cats. It was found that the SP domestic cats have a higher rate of T-suppressors and due to this IРI is 2.38±0.175. While the SP homeless cats have a larger T-helper subpopulation of lymphocytes and IРI is 4.13±0.506. In the SP domestic cats, the absolute content of B-lymphocytes was 0.616±0.038 and this indicator is the highest compared to other groups. There are also differences in the blood content of NK cells, namely in the homeless SP animals, it is higher than in the domestic cats. From this it should be noted that stray cats infected with T. gondii are mainly responsible for the widespread and constant pressure of infection in the region.

Key words: Toxoplasma gondii, IgG titer, phagocytic activity of neutrophils, NK cells

  1. Anfray P, Bonetti C, Fabbrini F, Magnino S, Mancianti F, Abramo F. Feline cutaneous toxoplasmosis: a case report. Dermatol. 2005; 16 (2): 131–136. DOI: 10.1111/j.1365-3164.2005.00434.x.
  2. Barrs VR, Martin P, Beatty JA. Antemortem diagnosis and treatment of toxoplasmosis in two cats on cyclosporin therapy. Australian Vet. J. 2006; 84 (1–2): 30–35. DOI: 10.1111/j.1751-0813.2006.tb13119.x.
  3. Beatty J, Barrs V. Acute toxoplasmosis in two cats on cyclosporin therapy. Australian Vet. J. 2003; 81 (6): 339. DOI: 10.1111/j.1751-0813.2003.tb11508.x.
  4. Bennouna S, Bliss SK, Curiel TJ, Denkers EY. Cross-talk in the innate immune system: neutrophils instruct early recruitment and activation of dendritic cells during microbial infection. Immunol. 2003; 171 (11): 6052–6058. DOI: 10.4049/jimmunol.171.11.6052.
  5. Bhadra R, Gigley JP, Khan IA. The CD8 T-cell road to immunotherapy of toxoplasmosis. Immunotherapy. 2011; 3 (6): 789–801. DOI: 10.2217/imt.11.68.
  6. Carvalho LH, Sano GI, Hafalla JCR, Morrot A, Curotto de Lafaille MA, Zavala F. IL-4-secreting CD4+T cells are crucial to the development of CD8+T-cell responses against malaria liver stages. Med. 2002; 8: 166–170. DOI: 10.1038/nm0202-166.
  7. Casciotti LK, Ely KH, Williams ME, Khan IA. CD8+-T-cell immunity against Toxoplasma gondii can be induced but not maintained in mice lacking conventional CD4+T cells. Immun. 2002; 70 (2): 434–443. DOI: 10.1128/IAI.70.2.434-443.2002.
  8. Combe CL, Curiel TJ, Moretto MM, Khan IA. NK cells help to induce CD8+-T-cell immunity against Toxoplasma gondii in the absence of CD4+T cells. Immun. 2020; 73 (8): 18. DOI: 10.1128/IAI.73.8.4913-4921.2005.
  9. Da Gama LM, Ribeiro-Gomes FL, Guimarães U, Arnholdt ACV. Reduction in adhesiveness to extracellular matrix components, modulation of adhesion molecules and in vivo migration of murine macrophages infected with Toxoplasma gondii. Infect. 2004; 6 (14): 1287–1296. DOI: 10.1016/j.micinf.2004.07.008.
  10. Dehtjarenko TV, Makulkyn RF. Biogenic biostimulants and immunoreactivity. Odesa, 1997; 1: 52–73. (in Ukrainian)
  11. Del Rio L, Bennouna S, Salinas J, Denkers EY. CXCR2 deficiency confers impaired neutrophil recruitment and increased susceptibility during Toxoplasma gondii J. Immunol. 2001; 167 (11): 6503–6509. DOI: 10.4049/jimmunol.167.11.6503.
  12. Denkers EY, Gazzinelli RT. Regulation and function of T-cell-mediated immunity during Toxoplasma gondii Clin. Microbiol. Rev. 1998; 11 (4): 569–588. DOI: 10.1128/CMR.11.4.569.
  13. Denkers EY, Schneider AG, Cohen SB, Butcher Phagocyte responses to protozoan infection and how Toxoplasma gondii meets the challenge. PLoS Pathog. 2012: e1002794. DOI: 10.1371/journal.ppat.1002794.
  14. Denkers EY, Yap G, Scharton-Kersten T, Charest H, Butcher BA, Caspar P, Heiny S, Sher A. Perforin-mediated cytolysis plays a limited role in host resistance to Toxoplasma gondii. Immunol. 1997; 159 (4): 1903–1908. PMID: 9257855.
  15. Dubey JP, Lindsay DS, Lappin MR. Toxoplasmosis and other intestinal coccidial infections in cats and dogs. Clin. North Am. Small Anim. Pract. 2009; 39 (6): 1009–1034. DOI: 10.1016/j.cvsm.2009.08.001.
  16. Dubey JP, Lindsay DS, Speer CA. Structures of Toxoplasma gondii tachyzoites, bradyzoites, and sporozoites and biology and development of tissue cysts. Microbiol. Rev. 1998; 11 (2): 267. DOI: 10.1128/CMR.11.2.267.
  17. Evans NA, Walker JM, Manchester AC, Bach JF. Acute respiratory distress syndrome and septic shock in a cat with disseminated toxoplasmosis. Vet. Emerg. Crit. Care. 2017; 27 (4): 472–478. DOI: 10.1111/vec.12621.
  18. Gazzinelli RT, Hieny S, Wynn TA, Wolf S, Sher A. Interleukin 12 is required for the T-lymphocyte-independent induction of interferon gamma by an intracellular parasite and induces resistance in T-cell-deficient hosts. 1993; 90 (13): 6115–6119. DOI: 10.1073/pnas.90.13.6115.
  19. Gazzinelli RT, Wysocka M, Hayashi S, Denkers EY, Hieny S, Caspar P, Trinchieri G, Sher A. Parasite-induced IL-12 stimulates early IFN-gamma synthesis and resistance during acute infection with Toxoplasma gondii. Immunol. 1994; 153 (6): 2533–2543. PMID: 7915739.
  20. Gazzinelli R, Xu Y, Hieny S, Cheever A, Sher A. Simultaneous depletion of CD4+ and CD8+T lymphocytes is required to reactivate chronic infection with Toxoplasma gondii. Immunol. 1992; 149 (1): 175–180. PMID: 1351500.
  21. Gómez-Chávez F, Cañedo-Solares I, Ortiz-Alegría LB, Flores-García Y, Luna-Pastén H, Figueroa-Damián R, Mora-González JC, Correa D. Maternal immune response during pregnancy and vertical transmission in human toxoplasmosis. Immunol. 2019; 10: 1–7. DOI: 10.3389/fimmu.2019.00285.
  22. Heimesaat MM, Bereswill S, Fischer A, Fuchs D, Struck D, Niebergall J, Jahn HK, Dunay IR, Moter A, Gescher DM, Schumann RR, Göbel UB, Liesenfeld O. Gram-negative bacteria aggravate murine small intestinal Th1-type immunopathology following oral infection with Toxoplasma gondii. Immunol. 2006; 177 (12): 8785–8795. DOI: 10.4049/jimmunol.177.12.8785.
  23. Hunter C, Subauste C, Van Cleave V, Remington JS. Production of gamma interferon by natural killer cells from Toxoplasma gondii-infected SCID mice: regulation by interleukin-10, interleukin-12, and tumor necrosis factor alpha. Immun. 1994; 62 (7): 2818–2824. DOI: 10.1128/iai.62.7.2818-2824.1994.
  24. Jadoon A, Akhtar T, Maqbool A, Anjum AA, Ajmal A. Seroprevalence of Toxoplasma gondii in canines. Anim. Plant Sci. 2009; 19 (4): 179–181. Available at: https://www.thejaps.org.pk/docs/19-no-4-2009/Jadoon.pdf
  25. Johnson LL, Sayles Deficient humoral responses underlie susceptibility to Toxoplasma gondii in CD4-deficient mice. Infect. Immun. 2002; 70 (1): 185–191. DOI: 10.1128/IAI.70.1.185-191.2002.
  26. Kang H, Remington JS, Suzuki Y. Decreased resistance of B cell-deficient mice to infection with Toxoplasma gondii despite unimpaired expression of IFN-γ, TNF-α, and inducible nitric oxide synthase. Immunol. 2000; 164 (5): 2629–2634. DOI: 10.4049/jimmunol.164.5.2629.
  27. Khan IA, Ely KH, Kasper LH. Antigen-specific CD8+T cell clone protects against acute Toxoplasma gondii infection in mice. Immunol. 1994; 152 (4): 1856–1860. Available at: https://www.jimmunol.org/content/152/4/1856
  28. Kudryavchenko OP. Distribution and methods of diagnosis of toxoplasmosis in cats and dogs. Abstract. PhD vet. sci. Lviv, 2016: 19 p. (in Ukrainian)
  29. Kul O, Atmaca HT, Deniz A, Süer C. Clinicopathologic diagnosis of cutaneous toxoplasmosis in an angora cat. Munch. Tierarztl. Wochenschr. 2011; 124 (9–10): 386–389. PMID: 21950216.
  30. Kusturov V. Serological monitoring distribution toxoplasmosis among home animals in the city of Odesa. Agr. Bull. Black Sea Littoral. 2020; 97: 189–194. DOI: 10.37000/abbsl.2020.97.24. (in Ukrainian)
  31. Last RD, Suzuki Y, Manning T, Lindsay D, Galipeau L, Whitbread TJ. A case of fatal systemic toxoplasmosis in a cat being treated with cyclosporin A for feline atopy. Dermatol. 2004; 15 (3): 194–198. DOI: 10.1111/j.1365-3164.2004.00371.x.
  32. Liesenfeld O, Kosek J, Remington JS, Suzuki Y. Association of CD4+ T cell-dependent, interferon-gamma-mediated necrosis of the small intestine with genetic susceptibility of mice to peroral infection with Toxoplasma gondii. Exp. Med. 1996; 184 (2): 597–607. DOI: 10.1084/jem.184.2.597.
  33. Lindsay DS, Dubey JP, Butler JM, Blagburn BL. Experimental tissue cyst induced Toxoplasma gondii infections in dogs. Eukaryot. Microbiol. 1996; 43 (5): 113S. DOI: 10.1111/j.1550-7408.1996.tb05032.x.
  34. Liu CH, Fan YT, Dias A, Esper L, Corn RA, Bafica A, Machado FS, Aliberti J. Cutting edge: dendritic cells are essential for in vivo IL-12 production and development of resistance against Toxoplasma gondii infection in mice. Immunol. 2006; 177 (1): 31–35. DOI: 10.4049/jimmunol.177.1.31.
  35. Malmasi A, Mosallanejad B, Mohebali M, Sharifian Fard M, Taheri M. Prevention of shedding and re-shedding of Toxoplasma gondii oocysts in experimentally infected cats treated with oral clindamycin: A preliminary study. Publ. Health. 2009; 56 (2): 102–104. DOI: 10.1111/j.1863-2378.2008.01174.x.
  36. Meireles LR, Galisteo AJ, Pompeu E, Andrade HF. Toxoplasma gondii spreading in an urban area evaluated by seroprevalence in free-living cats and dogs. Med. Int. Health. 2004; 9 (8): 876–881. DOI: 10.1111/j.1365-3156.2004.01280.x.
  37. Nathan C. Neutrophils and immunity: challenges and opportunities. Rev. Immunol. 2006; 6 (3): 173–182. DOI: 10.1038/nri1785.
  38. Ortiz-Alegría LB, Caballero-Ortega H, Cañedo-Solares I, Rico-Torres CP, Sahagún-Ruiz A, Medina-Escutia ME, Correa D. Congenital toxoplasmosis: candidate host immune genes relevant for vertical transmission and pathogenesis. Genes Immun. 2010; 11: 363–373. DOI: 10.1038/gene.2010.21.
  39. Pepper A, Mansfield C, Stent A, Johnstone T. Toxoplasmosis as a cause of life-threatening respiratory distress in a dog receiving immunosuppressive therapy. Case Rep. 2019; 7 (5): 942–948. DOI: 10.1002/ccr3.2121.
  40. Pfaff AW, Georges S, Abou-Bacar A, Letscher-Bru V, Klein JP, Mousli M, Candolfi E. Toxoplasma gondii regulates ICAM-1 mediated monocyte adhesion to trophoblasts. Cell Biol. 2005; 83 (5): 483–489. DOI: 10.1111/j.1440-1711.2005.01356.x.
  41. Piergili-Fioretti D. Problems and limitations of conventional and innovative methods for the diagnosis of toxoplasmosis in humans and animals. Parassitologia. 2004; 46 (1–2): 177–181. PMID:15305712. (in Italian)
  42. Scharton-Kersten TM, Wynn TA, Denkers EY, Bala S, Grunvald E, Hieny S, Gazzinelli RT, Sher A. In the absence of endogenous IFN-gamma mice develop unimpaired IL-12 responses to Toxoplasma gondii while failing to control acute infection. Immunol. 1996; 157 (9): 4045–4054. https://pubmed.ncbi.nlm.nih.gov/8892638/.
  43. Sun JC, Williams MA, Bevan MJ. CD4+T cells are required for the maintenance, not programming, of memory CD8+T cells after acute infection. Immunol. 2004; 5 (9): 927–933. DOI: 10.1038/ni1105.
  44. Tato CM, Villarino A, Caamaño JH, Boothby M, Hunter CA. Inhibition of NF-κB activity in T and NK cells results in defective effector cell expansion and production of IFN-γ required for resistance to Toxoplasma gondii. J. Immunol. 2003; 170 (6): 3139–3146. DOI: 10.4049/jimmunol.170.6.3139.
  45. Tenter AM, Heckeroth AR, Weiss LM. Toxoplasma gondii: from animals to humans. J. Parasitol. 2000; 30 (12–13): 1217–1258. DOI: 10.1016/S0020-7519(00)00124-7.
  46. Yap GS, Scharton-Kersten T, Charest H, Sher A. Decreased resistance of TNF receptor p55- and p75-deficient mice to chronic toxoplasmosis despite normal activation of inducible nitric oxide synthase in vivo. Immunol. 1998; 160 (3): 1340–1345. PMID: 9570552.

gslogo

ICLOGO

cr

nbuv

ouci0

WorldCat Logo

oa

Search