Download full text in PDF

Bìol. Tvarin. 2023; 25 (3): 23–30.
https://doi.org/10.15407/animbiol25.03.023
Received 11.07.2023 ▪ Revision 13.08.2023 ▪ Accepted 24.09.2023 ▪ Published online 02.10.2023


Kinematic parameters and redox state of thawed ram sperm after adding nanocitrate of Mn, Zn, and Cu to the medium for cryopreservation

O. M. Sharan

This email address is being protected from spambots. You need JavaScript enabled to view it.

Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies of Lviv, 50 Pekarska str., Lviv, 79010, Ukraine


The aim of the work was to find out the effect of adding nanocitrate of Mn, Zn and Cu to the medium for cryopreservation of ram sperm on kinematic indicators and respiratory activity of thawed sperm. The experiment was conducted on six clinically healthy breeder rams of the Texel breed aged 2–4 years. After receiving the ejaculates of the rams, they were evaluated for the volume, concentration and motility of the sperm and were divided into control and experimental groups. Control sperm samples were diluted with lactose-yolk-tris-citrate-glycerol medium (LYTCGM). Nanocitrates of trace elements were added to the medium in experimental samples of ram sperm in the following doses: Zn and Mn — 2.5, 5.0 and 7.5 μg/l, Cu — 1.25, 2.5 and 3.75 μg/l. Diluted sperm was packaged in straws, equilibrated for 2.5 hours and frozen. After thawing of sperm, motility, morphological damage of sperm, kinematic parameters of sperm motility (CASA), oxidation and reduction activity of sperm were determined. A dose-dependent effect of Mn, Zn, and Cu nanocitrates upon their addition to LYTCGM was established. The addition of Mn and Zn nanocitrate at a dose of 5.0 μg/l to LYTCGM significantly (P<0.05–0.01) increases the activity of thawed ram sperm, while the addition of Cu nanocitrate in increasing doses significantly reduces the motility of sperm in thawed ram sperm. Addition of Mn and Zn nanocitrate in an optimal dose of 5.0 μg/l to LYTCGM significantly (P<0.05–0.01) reduces the number of spermatozoa degenerated and with damaged acrosomes, and with the addition of Cu nanocitrate in increasing doses, morphological disorders of germ cell significantly increase cells The addition of Mn and Zn nanocitrate at a dose of 5.0 μg/l to LYTCGM significantly (P<0.01–0.001) increases the kinematic parameters of thawed ram sperm, and the addition of Cu nanocitrate in increasing doses significantly reduces the indicators of germ cell motility. The addition of Mn and Zn nanocitrates to the medium for cryopreservation of ram sperm increases the oxidation and inhibits the reduction activity of thawed sperm. Addition of Cu nanocitrate to LYTCGM in increasing doses reduces the oxidation and increases the reduction activity of thawed ram sperm.

Key words: ram, sperm, Mn, Zn, Cu nanocitrate, kinematic parameters, motility, respiratory activity


  1. Alvarez M, Anel-Lopez L, Boixo JC, Chamorro C, Neila-Montero M, Montes-Garrido R, de Paz P, Anel L. Current challenges in sheep artificial insemination: A particular insight. Domest. Anim. 2019; 54 (S4): 32–40. DOI: 10.1111/rda.13523.
  2. Benson JD, Woods EJ, Walters EM, Critser JK. The cryobiology of spermatozoa. Theriogenol. 2012; 78 (8): 1682–1699. DOI: 10.1016/j.theriogenology.2012.06.007.
  3. Borisevich VB, Kaplunenko VG, Kosinov MV. Nanomaterials in Biology. Fundamentals of nanoveterinary medicine. Kyiv, Avicenna. 2010: 416 p. (in Ukrainian)
  4. Del Olmo E, Bisbal A, Maroto-Morales A, García-Alvarez O, Ramon M, Jimenez-Rabadan P, Martínez-Pastor F, Soler AJ, Garde JJ, Fernandez-Santos MR. Fertility of cryopreserved ovine semen is determined by sperm velocity. Reprod. Sci. 2013; 138 (1–2): 102–109. DOI: 10.1016/j.anireprosci.2013.02.007.
  5. Eghbali M, Alavi-Shoushtari SM, Asri Rezaii S. Effects of copper and superoxide dismutase content of seminal plasma on buffalo semen characteristics. J. Biol. Sci. 2008; 11 (15): 1964–1968. DOI: 10.3923/pjbs.2008.1964.1968.
  6. Falchi L, Khalil WA, Hassan M, Marei WFA. Perspectives of nanotechnology in male fertility and sperm function. J. Vet. Sci. Med. 2018; 6 (2): 265–269. DOI: 10.1016/j.ijvsm.2018.09.001.
  7. Freitas MJ, Vijayaraghavan S, Fardilha M. Signaling mechanisms in mammalian sperm motility. Reprod. 2016; 96 (1): 2–12. DOI: 10.1095/biolreprod.116.144337.
  8. Gandini L, Lombardo F, Lenzi A, Spanò M, Dondero F. Cryopreservation and sperm DNA integrity. Cell Tiss. Bank. 2006; 7: 91–98. DOI: 10.1007/s10561-005-0275-8.
  9. Gibb Z, Griffin RA, Aitken RJ, De Iuliis GN. Functions and effects of reactive oxygen species in male fertility. Reprod. Sci. 2020; 220: 106456. DOI: 10.1016/j.anireprosci.2020.106456.
  10. Gibb Z, Lambourne SR, Aitken RJ. The paradoxical relationship between stallion fertility and oxidative stress. Reprod. 2014; 91 (3): 77. DOI: 10.1095/biolreprod.114.118539.
  11. Gulich MP, Yemchenko NL, Kharchenko OO, Yashchenko OV, Tomashevska LA, Antomonov MI. Nanotechnology Products: Citrates of Bioelements (Chemical Characteristics, Biological Action, Scope). Kyiv, Medinform, 2018: 202 p. (in Ukrainian)
  12. Iftikhar M, Noureen A, Uzair M, Jabeen F, Daim MA, Cappello T. Perspectives of nanoparticles in male infertility: evidence for induced abnormalities in sperm production. J. Environ. Res. Publ. Health. 2021; 18 (4): 1758. DOI: 10.3390/ijerph18041758.
  13. Iskra RY, Vlizlo VV, Fedoruk RS, Antonyak GL. Chromium in Animal Nutrition. A monograph. Kyiv, Agrarian Science. 2014: 312 p. (in Ukrainian)
  14. Kaplunenko VG, Avdosjeva IK, Pashchenko AG. The real prospects of drawing on accomplishments of nanotechnologies in veterinary practice. Tech. Bull. SSRCIVMPFA IAB. 2014; 15 (4): 252–260. Available at: https://www.scivp.lviv.ua/wp-content/uploads/2021/09/51-3.pdf (in Ukrainian)
  15. Khalil W, El-Harairy MA, Zeidan AEB, Hassan MAE. Impact of selenium nanoparticles in semen extender on bull sperm quality after cryopreservation. 2019; 126: 121–127. DOI: 10.1016/j.theriogenology.2018.12.017.
  16. Kornyat S, Sharan M, Ostapiv D, Korbeckij A, Jaremchuk I, Andrushko O. Quality of deconserved bull sperm for the action of nanosuccinates Zn, Cu and Mn in the diluents. Bìol. Tvarin. 2021; 23 (1): 23–29. DOI: 10.15407/animbiol23.01.023. (in Ukrainian)
  17. Kornyat S, Yaremchuk I, Andrushko O, Ostapiv D, Sharan M, Chajkovska O. The intensity of the oxidation processes in the sperm of the boar at the add of metal nanosuccinates to the ecosperm medium. Tech. Bull. SSRCIVMPFA. 2019; 20 (2): 352–357. DOI: 10.36359/scivp.2019-20-2.46. (in Ukrainian)
  18. Kosinov MV, Kaplunenko VG. Method for metal carboxylates obtaining “Nanotechnology of obtaining metal carboxylates”. Patent of Ukraine no. 38391. publ. 12.01.2009. Bull. No 1, 2009. Available at: https://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=128062 (in Ukrainian)
  19. Kuzmina N, Ostapiv D, Huleuk N, Gumeneckiy I. The activity and content of SOD isoforms in mail ejaculates and survival of spermatozoa. IFNUL Biol. Ser. 2012; 59: 44–51. Available at: http://publications.lnu.edu.ua/bulletins/index.php/biology/article/view/8506 (in Ukrainian)
  20. Kuzmina NV, Ostapiv DD. Isoferments SOD in diluted bull ejaculates. Breed. Gen. 2010; 44: 107–108. (in Ukrainian)
  21. Leahy T, Rickard JP, Aitken RJ, de Graaf SP. D-penicillamine prevents ram sperm agglutination by reducing the disulphide bonds of a copper-binding sperm protein. 2016; 151 (5): 491–500. DOI: 10.1530/REP-15-0596.
  22. Maulana T, Said S. Kinematics motility of frozen-thawed X and Y sperm of Sumba Ongole bull. IOP Conf. Ser. Earth Environ. Sci. 2019; 387: 012030. DOI: 10.1088/1755-1315/387/1/012030.
  23. Nagata MPB, Egashira J, Katafuchi N, Endo K, Ogata K, Yamanaka K, Yamanouchi T, Matsuda H, Hashiyada Y, Yamashita K. Bovine sperm selection procedure prior to cryopreservation for improvement of post-thawed semen quality and fertility. Anim. Sci. Biotechnol. 2019; 10: 1–14. DOI: 10.1186/s40104-019-0395-9.
  24. Nakada K, Sato A, Yoshida K, Morita T, Tanaka H, Inoue SI, Yonekawa H, Hayashi JI. Mitochondria-related male infertility. 2006; 103 (41): 15148–15153. DOI: 10.1073/pnas.0604641103.
  25. O’Meara CM, Hanrahan JP, Prathalingam NS, Owen JS, Donovan A, Fair S, Ward F, Wade M, Evans ACO, Lonergan P. Relationship between in vitro sperm functional tests and in vivo fertility of rams following cervical artificial insemination of ewes with frozen-thawed semen. Theriogenol. 2008; 69 (4): 513–522. DOI: 10.1016/j.theri2007.12.003.
  26. O’Connell M, McClure N, Lewis SEM. The effects of cryopreservation on sperm morphology, motility and mitochondrial function. Hum. Reprod. 2002; 17 (3): 704–709. DOI: 10.1093/humrep/17.3.704.
  27. Pal RP, Mani V, Mir SH, Singh RK, Sharma R. Importance of trace minerals in the ration of breeding bull — a review. J. Curr. Microbiol. App. Sci. 2017; 6 (11): 218–224. DOI: 10.20546/ijcmas.2017.611.026.
  28. Palacín I, Vicente-Fiel S, Santolaria P, Yániz JI. Standardization of CASA sperm motility assessment in the ram. Small Rum. Res. 2012; 112 (1–3): 128–135. DOI: 10.1016/j.smallrumres.2012.12.014.
  29. Piddubna L, Zakharchuk D, Bratushka R, Ivanytska V. Interrelation of kinetic parameters of sperm of servicing bulls of the Holstein breed with its fertilising ability. Horizons. 2022; 25 (8): 67–74. DOI: 10.48077/scihor.25(8).2022.67-74.
  30. Rokotianska VO. The effect of nanoacquahelates on the biological usefulness of spermatozoons. Agr. Sci. Black Sea Reg. 2018; 3: 56–60. DOI: 10.31521/2313-092X/2018-3(99)-9. (in Ukrainian)
  31. Rowe MP, Powell JG, Kegley EB, Lester TD, Rorie RW. Effect of supplemental tracemineral source on bull semen quality. Anim. Sci. 2014; 30 (1): 68–73. DOI: 10.15232/S1080-7446(15)30085-1.
  32. Salamon S, Maxwell WMC. Frozen storage of ram semen I. Processing, freezing, thawing and fertility after cervical insemination. Reprod. Sci. 1995; 34 (3–4): 185–249. DOI: 10.1016/0378-4320(94)01327-I.
  33. Salamon S, Maxwell WMC. Storage of ram semen. Reprod. Sci. 2000; 62 (1–3): 77–111. DOI: 10.1016/S0378-4320(00)00155-X.
  34. Sengupta P. Environmental and occupational exposure of metals and their role in male reproductive functions. Drug Chem. Toxicol. 2013; 36 (3): 353–368. DOI: 10.3109/01480545.2012.710631.
  35. Serdyuk AM, Gulich MP, Kaplunenko VG, Kosinov MV. Nanotechnologies of micronutrients: problems, prospects and ways to eliminate the deficiency of macro- and microelements. Acad. Med. Sci. Ukraine. 2010; 16 (1): 107–114. (in Ukrainian)
  36. Singh A, Kumar A, Bisla A. Computer-assisted sperm analysis (CASA) in veterinary science: A review. Indian J. Anim. Sci. 2021; 91 (6): 419–429. DOI: 10.56093/ijans.v91i6.115435.
  37. Skrzycki M, Czeczot H. Extracellular superoxide dismutase (EC–SOD) — structure, properties and functions. Postępy Hig. Med. Dośw. 2004; 58: 301–311. PMID: 15280800. (in Polish)
  38. Smith JF, Parr J, Murray GR, Clarke A, McDonald RM, Duganzich DM. Relationships between laboratory measures of ram sperm competence and field fertility. New Zealand Soc. Anim. Prod. 1998; 58: 181–185. Available at: https://www.nzsap.org/proceedings/1998/relationships-between-laboratory-measures-ram-sperm-competence-and-field-fertility
  39. Suarez SS, Pacey AA. Sperm transport in the female reproductive tract. Reprod. Upd. 2006; 12 (1): 23–37. DOI: 10.1093/humupd/dmi047.
  40. Tekin N, Uysal O, Akçay E, Yavaş İ. Effects of different taurine doses and freezing rate on freezing of row semen. Ankara Üniver. Vet. Fakült. Dergisi. 2006; 53 (3): 179–184 DOI: 10.1501/Vetfak_0000000085. (in Turkish)
  41. Uysal O, Bucak MN. Effects of oxidized glutathione, bovine serum albumin, cysteine and lycopene on the quality of frozen-thawed ram semen. Acta Vet. Brno. 2007; 76 (3): 383–390. DOI: 10.2754/avb200776030383.
  42. Van de Hoek M, Rickard JP, de Graaf SP. Motility assessment of ram spermatozoa. Biology. 2022; 11 (12): 1715. DOI: 10.3390/biology11121715.
  43. Vicente-Fiel S, Palacín I, Santolaria P, Fantova E, Quintín-Casorrán FJ, Sevilla-Mur E, Yániz JL. In vitro assessment of sperm quality from rams of high and low field fertility. Reprod. Sci. 2014; 146 (1–2): 15–20. DOI: 10.1016/j.anireprosci.2014.02.005.
  44. Vlizlo VV, Iskra RY, Fedoruk RS. Nanobiotechnologies. Present state and future prospectes. Bìol. Tvarin. 2015; 17 (4): 18–29. Available at: http://aminbiol.com.ua/index.php/106-archive/bt-17-4-2015/1386 (in Ukrainian)
  45. Vlizlo VV. (ed.). Laboratory Methods in Biology, Stockbreeding and Veterinary Medicine. Lviv, Spolom Publ., 2012: 764 p. (in Ukrainian)
  46. Wirth JJ, Mijal RS. Adverse effects of low level heavy metal exposure on male reproductive function. Biol. Reprod. Med. 2010; 56 (2): 147–167. DOI: 10.3109/19396360903582216.
  47. Yániz JL, Silvestre MA, Santolaria P, Soler C. CASA-Mot in mammals: An update. Fertil. Dev. 2018; 30 (6): 799–809. DOI: 10.1071/RD17432.
  48. Yaremchuk IM, Sharan MM. Modern opportunities of sperm quality analysis and sperm dose calculation. Bìol. Tvarin. 2012; 14 (1–2): 697–703. Available at: http://aminbiol.com.ua/index.php/archive?catid=1:2013-02-15-09-09-13&id=203:2013-03-09-12-31-38 (in Ukrainian)
  49. Yaremchuk I, Kuzmina N, Ostapiv D, Sharan M, Kava S. Oxidative processes intensity and quallity of bull semen when adding microelements nanosuccinate compounds. Mess. LNUVMBT Ser. Vet. Sci. 2017; 19 (77): 185–189. DOI: 10.15421/nvlvet7740. (in Ukrainian)

Search