Download full text in PDF

Boniuk NV, Shchebentovska OM. Morphometric features of the duodenal wall in piglets during different periods of postnatal and neonatal ontogenesis under the influence of the ‘Globigen Jump Start’ feed additive. Bìol Tvarin. 2024; 26 (2): 3–10.
https://doi.org/10.15407/animbiol26.02.003
Received 16.02.2024 ▪ Revision 29.05.2024 ▪ Accepted 08.07.2024 ▪ Published online 10.07.2024


Morphometric features of the duodenal wall in piglets during different periods of postnatal and neonatal ontogenesis under the influence of the ‘Globigen Jump Start’ feed additive

N. V. Boniuk1, O. M. Shchebentovska2

This email address is being protected from spambots. You need JavaScript enabled to view it.

1Institute of Animal Biology NAAS, 38 V. Stusa str., Lviv, 79034, Ukraine
2Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies Lviv, 50 Pekarska str., Lviv, 79010, Ukraine


The morphological parameters of the small intestinal mucosa, such as villi size and crypts, play a key role in the formation of the intestinal tube’s absorption surface. The number of goblet and enterochromaffin cells indicates the epithelium’s functional condition in terms of mucus secretion and production of catecholamines and hormones (serotonin, dopamine). That is why it is important to study and determine certain morphometric parameters of the duodenal wall in piglets during different periods of neonatal and postnatal development, especially during stress situations, namely weaning and transition to protein feeding. The article presents the resulting effect studies of ‘Globigen Jump Start’ feed additive on the histo-morphological parameters of the piglets’ duodenal mucosa on day 7, 14 and 28 of life. A positive effect on mitigating weaning stress was manifested by a decrease in the quantitative and linear indicators of histoarchitectonics of intestinal wall’s individual morphological components. A significant increase in goblet cells, especially in the experimental group, had a positive impact on the mucopolysaccharide synthesis. The piglets’ gastrointestinal tract physiology involves a complex interaction between the central nervous system, metasympathetic nervous system, APUD system, and endocrine system. Due to these systems, the information is transmitted according to the direct and reverse communication mechanisms in the regulation of the gastrointestinal tract function. An increase in the number of enterochromaffin cells and their nuclei diameter in the experimental group of piglets indicated an increased synthesis of catecholamines and hormones. It has an extremely positive effect on the immune and physiological status of piglets, thus emphasizing the crucial role of serotonin in neuronal metabolism and the formation of stress resistance. The increase in the thickness of the duodenal wall muscle layer, in our opinion, occured due to the active peristalsis, which was enhanced by the action of some catecholamines, which were synthesized in a slightly larger amount under the influence of nutrients making up the ‘Globigen Jump Start’ feed additive.

Key words: piglets, duodenum, villi, crypts, goblet cells, enterochromaffin cells, yeast, egg powder


  1. Bao X, Gänzle MG, Wu J. Ovomucin hydrolysates reduce bacterial adhesion and inflammation in enterotoxigenic Escherichia coli (ETEC) K88-challenged intestinal epithelial cells. J Agric Food Chem. 2024; 72 (13): 7219–7229. DOI: 10.1021/acs.jafc.4c00185.
  2. Birchenough GM, Johansson ME, Gustafsson JK, Bergström JH, Hansson GC. New developments in goblet cell mucus secretion and function. Mucosal Immunol. 2015; 8 (4): 712–719. DOI: 10.1038/mi.2015.32.
  3. Bomba L, Minuti A, Moisá SJ, Trevisi E, Eufemi E, Lizier M, Chegdani F, Lucchini F, Rzepus M, Prandini A, Rossi F, Mazza R, Bertoni G, Loor JJ, Ajmone-Marsan P. Gut response induced by weaning in piglet features marked changes in immune and inflammatory response. Function Integr Genomics. 2014; 14 (4): 657–671. DOI: 10.1007/s10142-014-0396-x.
  4. Boudry G, Péron V, Le Huërou-Luron I, Lallès JP, Sève B. Weaning induces both transient and long-lasting modifications of absorptive, secretory, and barrier properties of piglet intestine. J Nutr. 2004; 134 (9): 2256–2262. DOI: 10.1093/jn/134.9.2256.
  5. Chowdhury R., Knabe DA. Saccharomyces Cerevisiae-Aspartic acid interaction in diet for nursery pigs: I. Effects on growth performance. J Anim Sci. 2004; 82: 1415–1422.
  6. Clevers H. The intestinal crypt, a prototype stem cell compartment. 2013; 154 (2): 274–284. DOI: 10.1016/j.cell.2013.07.004.
  7. Gershon MD, Tack J. The serotonin signaling system: From basic understanding to drug development for functional GI disorders. Gastroenterol. 2007; 132 (1): 397–414. DOI: 10.1053/j.gastr2006.11.002.
  8. Greenwood-Van Meerveld B, Johnson AC, Grundy D. Gastrointestinal Physiology and Function. In: Greenwood-Van Meerveld B (ed). Gastrointestinal Pharmacology. 2017; 239: 1–16. DOI: 10.1007/164_2016_118.
  9. Gunawardene AR, Corfe BM, Staton CA. Classification and functions of enteroendocrine cells of the lower gastrointestinal tract. Int J Exp Pathol. 2011; 92 (4): 219–231. DOI: 10.1111/j.1365-2613.2011.0076x.
  10. Hampson DJ. Alterations in piglet small intestinal structure at weaning. Res Vet Sci. 1986; 40 (1): 32–40. DOI: 10.1016/S0034-5288(18)30482-X.
  11. Hedemann MS, Højsgaard S, Jensen BB. Lectin histochemical characterisation of the porcine small intestine around weaning. Res Vet Sci. 2007; 82 (2): 257–262. DOI: 10.1016/j.rvsc.2006.06.007.
  12. Hedemann MS, Jensen BB. Variations in enzyme activity in stomach and pancreatic tissue and digesta in piglets around weaning. Arch Anim Nutr. 2004; 58 (1): 47–59. DOI: 10.1080/00039420310001656677.
  13. Heo JM, Opapeju FO, Pluske JR, Kim JC, Hampson DJ, Nyachoti CM. Gastrointestinal health and function in weaned pigs: a review of feeding strategies to control post-weaning diarrhoea without using in-feed antimicrobial compounds. J Anim Physiol Anim Nutr. 2013; 97 (2): 207–237. DOI: 10.1111/j.1439-0396.2012.01284.x.
  14. Hu CH, Xiao K, Luan ZS, Song J. Early weaning increases intestinal permeability, alters expression of cytokine and tight junction proteins, and activates mitogen-activated protein kinases in pigs. J Anim Sci. 2013; 91 (3): 1094–1101. DOI: 10.2527/jas.2012-5796.
  15. Huang G, Li X, Lu D, Liu S, Suo X, Li Q, Li N. Lysozyme improves gut performance and protects against enterotoxigenic Escherichia coli infection in neonatal piglets. Vet Res. 2018; 49 (1): 20. DOI: 10.1186/s13567-018-0511-4.
  16. Kim YS, Ho SB. Intestinal goblet cells and mucins in health and disease: recent insights and progress. Curr Gastroenterol Rep. 2010; 12 (5): 319–330. DOI: 10.1007/s11894-010-0131-2.
  17. Lallès JP, Boudry G, Favier C, Le Floc’h N, Luron I, Montagne L, Oswald IP, Pié S, Piel C, Sève B. Gut function and dysfunction in young pigs: physiology. Anim Res. 2004; 53 (4): 301–316. DOI: 10.1051/animres:2004018.
  18. Lauridsen C, Matte JJ, Lessard M, Celi P, Litta G. Role of vitamins for gastro-intestinal functionality and health of pigs. Anim Feed Sci Technol. 2021; 273: 114823. DOI: 10.1016/j.anifeedsci.114823.
  19. Mulisch M, Welsch U. Romeis — Mikroskopische Technik. Spektrum Akademischer Verlag Heidelberg, 2010: 568 p. Available at: https://link.springer.com/book/10.1007/978-3-642-55190-1 (in German)
  20. Noah TK, Donahue B, Shroyer NF. Intestinal development and differentiation. Exp Cell Res. 2011; 317 (19): 2702–2710. DOI: 10.1016/j.yexcr.2011.09.006.
  21. Peterson LW, Artis D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol. 2014; 14 (3):141–153. DOI: 10.1038/nri3608.
  22. Pluske JR, Turpin DL, Kim JC. Gastrointestinal tract (gut) health in the young pig. Anim Nutr. 2018; 4 (2): 187–196. DOI: 10.1016/j.aninu.2017.12.004.
  23. Prudyus TY, Shchebentovska O, Salyha YT, Vorobel MI. Morphological changes in the immune system organs of piglets fed with different feed additives. Reg Mech Biosys. 2023; 14 (4): 687–694. DOI: 10.15421/022398.
  24. Roth KA, Gordon JI. Spatial differentiation of the intestinal epithelium: analysis of enteroendocrine cells containing immunoreactive serotonin, secretin, and substance P in normal and transgenic mice. 1990; 87 (16): 6408–6412. DOI: 10.1073/pnas.87.16.6408.
  25. Sauerwein H, Schmitz S, Hiss S. Effects of a dietary application of a yeast cell wall extract on innate and acquired immunity, on oxidative status and growth performance in weanling piglets and on the ileal epithelium in fattened pigs. J Anim Physiol Anim Nutr. 2007; 91 (9–10): 369–380. DOI: 10.1111/j.1439-0396.2006.00663.x.
  26. Specian RD, Neutra MR. Mechanism of rapid mucus secretion in goblet cells stimulated by acetylcholine. J Cell Biol. 1980; 85 (3): 626–640. DOI: 10.1083/jcb.85.3.626.
  27. Stanley VG, Gray C, Daley M, Krueger WF, Sefton AE. An alternative to antibiotic-based drugs in feed for enhancing performance of broilers grown on Eimeria-infected litter. Poult Sci. 2004; 83 (1): 39–44. DOI: 10.1093/ps/83.1.39.
  28. Su W, Gong T, Jiang Z, Lu Z, Wang Y. The role of probiotics in alleviating postweaning diarrhea in piglets from the perspective of intestinal barriers. Front Cell Infect Microbiol. 2022; 12: 883107. DOI: 10.3389/fcimb.2022.883107.
  29. Takiishi T, Fenero CIM, Câmara NOS. Intestinal barrier and gut microbiota: Shaping our immune responses throughout life. Tissue Barriers. 2017; 5 (4): e1373208. DOI: 10.1080/21688370.2017.1373208.
  30. Tang M, Laarveld B, Van Kessel AG, Hamilton DL, Estrada A, Patience JF. Effect of segregated early weaning on postweaning small intestinal development in pigs. J Anim Sci. 1999; 77 (12): 3191–3200. DOI: 10.2527/1999.77123191x.
  31. Tang W, Liu J, Ma Y, Wei Y, Liu J, Wang H. Impairment of intestinal barrier function induced by early weaning via autophagy and apoptosis associated with gut microbiome and metabolites. Front Immunol. 2021; 12: 804870. DOI: 10.3389/fimmu.2021.804870.
  32. Tang X, Xiong K. Intrauterine growth retardation affects intestinal health of suckling piglets via altering intestinal antioxidant capacity, glucose uptake, tight junction, and immune responses. Oxid Med Cell Longev. 2022; 2022: 2644205. DOI: 10.1155/2022/2644205.
  33. Tu A, Wang XC, Chen H, Jia X, Wang T, Yi Y, Liu B, Xin W, Lü X, Shan Y. Ovomucin ameliorates intestinal barrier and intestinal bacteria to attenuate DSS-induced colitis in mice. J Agric Food Chem. 2021; 69 (21): 5887–5896. DOI: 10.1021/acs.jafc.1c00865.
  34. Wang LX, Zhu F, Li JZ, Li YL, Ding XQ, Yin J, Xiong X, Yang HS. Epidermal growth factor promotes intestinal secretory cell differentiation in weaning piglets via wnt/β-catenin signalling. 2020; 14 (4): 790–798. DOI: 10.1017/S1751731119002581.
  35. White F, Wenham G, Sharman GAM, Jones AS, Rattray EAS, McDonald I. Stomach function in relation to a scour syndrome in the piglet. British J Nutr. 1969; 23 (4): 847–858. DOI: 10.1079/BJN19690095.
  36. Yang H, Xiong X, Wang X, Li T, Yin Y. Effects of weaning on intestinal crypt epithelial cells in piglets. Sci Rep. 2016; 6: 36939. DOI: 10.1038/srep36939.
  37. Yang H, Xiong X, Wang X, Tan B, Li T, Yin Y. Effects of weaning on intestinal upper villus epithelial cells of piglets. PloS One. 2016; 11 (3): e0150216. DOI: 10.1371/journal.pone.0150216.
  38. Yang M, Liu J, Li Y, Yang Q, Liu C, Liu X, Zhang B, Zhang H, Zhang T, Du Z. Co-encapsulation of egg-white-derived peptides (EWDP) and curcumin within the polysaccharide-based amphiphilic nanoparticles for promising oral bioavailability enhancement: Role of EWDP. J Agr Food Chem. 2022; 70 (16): 5126–5136. DOI: 10.1021/acs.jafc.1c08186.
  39. Yang Q, Lyu S, Xu M, Li S, Du Z, Liu X, Shang X, Yu Z, Liu J, Zhang T. J Agr Food Chem. 2023; 71 (36): 13168–13180. DOI: 10.1021/acs.jafc.3c03230.

Search