Download full text in PDF

Oliynyk IY. From Chilean saltpeter to modern agriculture: navigating nitrate toxicity in ruminants through compartmental modeling. Bìol Tvarin. 2024; 26 (2): 11–18.
https://doi.org/10.15407/animbiol26.02.011
Received 23.02.2024 ▪ Revision 20.06.2024 ▪ Accepted 08.07.2024 ▪ Published online 10.07.2024


From Chilean saltpeter to modern agriculture: navigating nitrate toxicity in ruminants through compartmental modeling

I. Ya. Oliynyk

This email address is being protected from spambots. You need JavaScript enabled to view it.

Institute of Animal Biology NAAS, 38 V. Stusa str., Lviv, 79034, Ukraine


Nitrate/nitrite poisoning is a significant issue in ruminant livestock health, with historical roots predating the widespread use of nitrogen fertilizers. This review explores the various factors contributing to nitrate toxicity, including natural and anthropogenic sources, metabolic pathways, mechanisms of action, and the variability in reported data. The importance of compartmental modeling in understanding nitrate metabolism dynamics is emphasized. These models provide a framework for simulating the complex processes involved in nitrate intake, conversion, absorption, distribution, and excretion, ultimately informing effective mitigation strategies. The goal of this article is to provide a comprehensive overview of nitrate/nitrite poisoning in ruminants and highlight the role of compartmental modeling in safeguarding animal health, optimizing agricultural practices, and ensuring food safety in the context of modern agriculture.

Key words: nitrate toxicity, ruminants, compartmental modeling, methemoglobinemia, feed management


  1. Aschenbach JR, Penner GB, Stumpff F, Gäbel G. Ruminant Nutrition Symposium: Role of fermentation acid absorption in the regulation of ruminal pH. J Anim Sci. 2011; 89 (4): 1092–1107. DOI: 10.2527/jas.2010-3301.
  2. Bebarta VS, Brittain M, Chan A, Garrett N, Yoon D, Burney T, Mukai D, Babin M, Pilz RB, Mahon SB, Brenner M, Boss GR. Sodium nitrite and sodium thiosulfate are effective against acute cyanide poisoning when administered by intramuscular injection. Ann Emerg Med. 2017; 69 (6): 718–725e4. DOI: 10.1016/j.annemergmed.2016.09.034.
  3. Bian Z, Wang Y, Zhang X, Li T, Grundy S, Yang Q, Cheng R. A review of environment effects on nitrate accumulation in leafy vegetables grown in controlled environments. Foods. 2020; 9 (6): DOI: 10.3390/foods9060732.
  4. Camargo JA, Alonso Á. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environ Int. 2006; 32 (6): 831–849. DOI: 10.1016/j.envint.2006.05.002.
  5. Cameron KC, Di HJ, Moir JL Nitrogen losses from the soil/plant system: a review. Ann Appl Biol. 2013; 162 (2): 145–173. DOI: 10.1111/aab.12014.
  6. Demidas HI, Galushko IV. Mineral composition of feed mass of the meadow clover different varieties depending on the elements of growing technology. Feed Feed Prod. 2020; 89: 151–160. DOI: 10.31073/kormovyrobnytstvo202089-15.
  7. EFSA Panel on Contaminants in the Food Chain (CONTAM), Schrenk D, Bignami M, Bodin L, Chipman JK, Del Mazo J, Grasl-Kraupp B, Hoogenboom L, Leblanc JC, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Wallace H, Bampidis V, Cottrill B, Frutos MJ, Furst P, Parker A, Binaglia M, Christodoulidou A, Gergelova P, Guajardo IM, Wenger C, Hogstrand C. Risk assessment of nitrate and nitrite in feed. EFSA J. 2020; 18 (11): e06290. DOI: 10.2903/j.efsa.2020.6290.
  8. Fan J, de Lannoy IAM. Pharmacokinetics. Biochem Pharmacol. 2014 ;87 (1): 93–120. DOI: 10.1016/j.bcp.2013.09.007.
  9. Gutser R, Ebertseder T, Weber A, Schraml M, Schmidhalter U. Short-term and residual availability of nitrogen after long-term application of organic fertilizers or arable land. J Plant Nutr Soil Sci. 2005; 168 (4): 439–446. DOI: 10.1002/jpln.200520510.
  10. Hristov AN, Bannink A, Crompton LA, Huhtanen P, Kreuzer M, McGee M, Nozière P, Reynolds CK, Bayat AR, Yáñez-Ruiz DR, Dijkstra J, Kebreab E, Schwarm A, Shingfield KJ, Yu Z. Nitrogen in ruminant nutrition: A review of measurement techniques. J Dairy Sci. 2019; 102 (7): 5811–5852. DOI: 10.3168/jds.2018-15829.
  11. Hunter W. The corn-stalk disease and rabies in cattle. Med News. 1895; 67 (25): 617–620.
  12. Kabelitz T, Ammon C, Funk R, Münch S, Biniasch O, Nübel U, Thiel N, Rösler U, Siller P, Amon B, Aarnink AJA, Amon T. Functional relationship of particulate matter (PM) emissions, animal species, and moisture content during manure application. Environ Int. 2020; 143: 105577. DOI: 10.1016/j.envint.2020.105577.
  13. Lee C, Beauchemin KA. A review of feeding supplementary nitrate to ruminant animals: Nitrate toxicity, methane emissions, and production performance. Canadian J Anim Sci. 2014; 94 (4): 557–570. DOI: 10.4141/cjas-2014-069.
  14. Li Y, Tang F, Xu D, Xie B. Advances in biological nitrogen removal of landfill leachate. Sustainability. 2021; 13 (11): 6236. DOI: 10.3390/su13116236.
  15. Menke HH, Steingass H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim Res Dev. 1988; 28: 7–55.
  16. Mustaffa AR, Ku Hamid KH, Musa M, Idris J, Ramli R. High nitrate and phosphate ions reduction in modified low salinity fresh water through microalgae cultivation. 2019; 7 (3): 129. DOI: 10.3390/pr7030129.
  17. Nasser H, Aladdin F, Nasser HA. Determination of nitrates in samples using ion selective electrode with its new conditions. J Chem Pharm Sci. 2018; 11 (1): 45–48. DOI: 10.30558/jchps.20181101009.
  18. Patra AK, Saxena J. Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition. J Sci Food Agric. 2011; 91 (1): 24–37. DOI: 10.1002/jsfa.4152.
  19. Van Zijderveld SM, Gerrits WJJ, Dijkstra J, Newbold JR, Hulshof RBA, Perdok HB. Persistency of methane mitigation by dietary nitrate supplementation in dairy cows. J Dairy Sci. 2011; 94 (8): 4028–4038. DOI: 10.3168/jds.2011-4236.
  20. Wang L, Ma L, Li Y, Geilfus CM, Wei J, Zheng F, Liu Z, Tan D. Managing nitrogen for sustainable crop production with reduced hydrological nitrogen losses under a winter wheat-summer maize rotation system: an eight-season field study. Front Plant Sci. 2023; 14: 1274943. DOI: 10.3389/fpls.2023.1274943.
  21. Williams MC, Smith BJ, Rafael LV. Effect of nitrogen, sodium, and potassium on nitrate and oxalate concentration in Kikuyugrass. Weed Technol. 1991; 5 (3): 553–556. DOI: 10.1017/S0890037X00027317.
  22. Yang C, Rooke JA, Cabeza I, Wallace RJ. Nitrate and inhibition of ruminal methanogenesis: Microbial ecology, obstacles, and opportunities for lowering methane emissions from ruminant livestock. Front Microbiol. 2016; 7: 132. DOI: 10.3389/fmicb.2016.00132.
  23. Zhang H, Wu Q, Li Y, Xiong S. Simultaneous detection of nitrate and nitrite based on UV absorption spectroscopy and machine learning. Spectrosc Suppl. 2021; 36 (S12): 38–44. Available at: https://www.spectroscopyonline.com/view/simultaneous-detection-of-nitrate-and-nitrite-based-on-uv-absorption-spectroscopy-and-machine-learning

Search