Download full text in PDF

Bìol. Tvarin. 2023; 25 (2): 8–13.
https://doi.org/10.15407/animbiol25.02.008
Received 16.04.2023 ▪ Revision 18.05.2023 ▪ Accepted 25-06-2023 ▪ Published online 30.06.2023


The quality of ram spermatozoa after thawing with the addition of Mn2+, Zn2+ and Cu2+ nanocitrate to cryopreservation diluent

O. Sharan1, V. Stefanyk1, M. Murawski2

This email address is being protected from spambots. You need JavaScript enabled to view it.

1Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies of Lviv, 50 Pekarska str. Lviv, 79010, Ukraine
2University of Agriculture in Kraków, Al. Mickiewicza, 21, Kraków, 31-120, Poland


The aim of the study was to find out the effect of adding nanocitrate of Mn, Zn and Cu to the diluent for ram spermatozoa cryopreservation on its quality and ability for fertilizing. The experiment was carried out on six clinically healthy breeder 2–4-year-old rams of the Texel breed. The received ejaculates of the rams were evaluated for the volume, sperm concentration and motility and then divided into control and experimental groups. Control sperm samples were diluted with lactose-yolk-tris-citrate-glycerin medium (LYTCGM). Nanocitrates of microelements were added to the medium in experimental samples of ram sperm in the following doses: Zn2+ and Mn2+ — 2.5, 5.0 and 7.5 μg/l, Cu2+ — 1.25, 2.5 and 3.75 μg/l. The diluted sperm was packaged in straws, equilibrated for 2.5 h and frozen. After thawing of sperm we determined motility, survival of sperm, activity of succinate dehydrogenase (SDH) and cytochrome oxidase (CO), activity of antioxidant protection enzymes superoxide dismutase (SOD), glutathione peroxidase (HPO) and catalase (CAT). A dose-dependent effect of Mn, Zn, and Cu nanocitrates upon their addition to LYTCGM was established. Addition of nanocitrates of Mn, Zn to LYTCGM at a dose of 5.0 μg/l increased sperm motility by 22.2% (P<0.05) and 26.0% (P<0.01), and sperm survival, respectively, by 12.6% on (P<0.01) and 5.9% (P<0.05) compared to the control. Nanocitrates of Mn, Zn at a dose of 5.0 μg/l as part of LYTCGM caused a probable increase in SDH (P<0.001) and CO (P<0.05–0.01), which indicates a high fertilizing ability of ram spermatozoa. Similarly, when Mn, Zn nanocitrates were added to LYTCGM at a dose of 5.0 μg/l, SOD activity decreased by 29.6% (P<0.01) and 38.8% (P<0.01) and HPO activity increased by 43.5% (P<0.01) and 39.1% (P<0.01), and CAT — by 40.0% (P<0.05) and 37.5% (P<0.05), respectively. At the same time, the addition of Cu nanocitrate to LYTCGM with an increase in the dose significantly reduces the activity, survival and fertilizing capacity of thawed ram spermatozoa, and also worsens their antioxidant protection.

Key words: ram, sperm, nanocitrate Mn, Zn, Cu, fertilizing ability, motility, antioxidant protection


  1. Ali A, Ijaz M, Khan YR, Sajid HA, Hussain K, Rabbani AH, Shahid M, Naseer O, Ghaffar A, Naeem MA, Zafar MZ, Malik AI, Ahmed I. Role of nanotechnology in animal production and veterinary medicine. Anim. Health Prod. 2021; 53 (5): 508. DOI: 10.1007/s11250-021-02951-5.
  2. Alvarez M, Anel-Lopez L, Boixo JC, Chamorro C, Neila-Montero M, Montes-Garrido R, de Paz P, Anel L. Current challenges in sheep artificial insemination: A particular insight. Domest. Anim. 2019; 54 (S4): 32–40. DOI: 10.1111/rda.13523.
  3. Benson JD, Woods EJ, Walters EM, Critser JK. The cryobiology of spermatozoa. 2012; 78 (8): 1682–1699. DOI: 10.1016/j.theriogenology.2012.06.007.
  4. Borisevich VB, Kaplunenko VG, Kosinov MV. Nanomaterials in Biology. Fundamentals of nano-veterinary medicine. Kyiv, Avicenna, 2010: 416 p. (in Ukrainian)
  5. Eghbali M, Alavi-Shoushtari SM, Rezaii SA. Effects of copper and superoxide dismutase content of seminal plasma on buffalo semen characteristics. Pakistan J. Biol. Sci. 2008; 11 (15): 1964–1968. DOI: 10.3923/pjbs.2008.1964.1968.
  6. Falchi L, Khalil WA, Hassan M, Marei WFA. Perspectives of nanotechnology in male fertility and sperm function. J. Vet. Sci. Med. 2018; 6 (2): 265–269. DOI: 10.1016/j.ijvsm.2018.09.001.
  7. Ford WCL. Regulation of sperm function by reactive oxygen species. Human Reprod. 2004; 10 (5): 387–399. DOI: 10.1093/humupd/dmh034.
  8. Gandini L, Lombardo F, Lenzi A, Spanò M, Dondero F. Cryopreservation and Sperm DNA Integrity. Cell Tiss. Bank. 2006; 7: 91–98. DOI: 10.1007/s10561-005-0275-8.
  9. Iftikhar M, Noureen A, Uzair M, Jabeen F, Daim MA, Cappello T. Perspectives of nanoparticles in male infertility: evidence for induced abnormalities in sperm production. J. Environ. Res. Publ. Health. 2021; 18 (4): 1758. DOI: 10.3390/ijerph18041758.
  10. Iskra RY, Vlizlo VV, Fedoruk RS, Antonyak GL. Chromium in Animal Nutrition. A monograph. Kyiv, Agrarian Science Publ., 2014: 312 p. (in Ukrainian)
  11. Kareem EH, Dawood TN, Al-Samarai FR. Application of nanoparticle in the veterinary medicine. Magna Scientia Adv. Res. Rev. 2022; 4 (1): 27–38. DOI: 10.30574/msarr.2022.4.1.0082.
  12. Khalil W, El-Harairy MA, Zeidan AEB, Hassan MAE. Impact of selenium nanoparticles in semen extender on bull sperm quality after cryopreservation. Theriogenol. 2019; 126: 121–127. DOI: 10.1016/j.theriogenology.2018.12.017.
  13. Kondrasiy LA, Yakubchak ON, Maliuk NO, Kaplunenko VH. The quality variation of raw milk under preparation based on citrate Zn and Ge. Rep. NULES Ukraine. 2017; 3 (67): 19–32. DOI: 10.31548/dopovidi2017.03.019. (in Ukrainian)
  14. Kondratska OA, Grushka NG, Kaplunenko VG, Pavlovych SI, Sribna VO, Yanchii RI. Protective effect of germanium citrate in endotoxin-induced ovarian dysfunction in mice. Perspect. 2018; 23 (1/1): 71–77. DOI: 10.26641/2307-0404.2018.1(part1).127240. (in Ukrainian)
  15. Kornyat S, Sharan M, Ostapiv D, Korbeckij A, Jaremchuk I, Andrushko O. Quality of deconserved bull sperm for the action of nanosuccinates Zn, Cu and Mn in the diluents. Bìol. Tvarin. 2021; 23 (1): 23–29. DOI: 10.15407/animbiol23.01.023. (in Ukrainian)
  16. Kornyat S, Yaremchuk I, Andrushko O, Ostapiv D, Sharan M, Chajkovska O. The intensity of the oxidation processes in the sperm of the boar at the add of metal nanosuccinates to the Ecosperm medium. Tech. Bull. SSRCIVMPFA. 2019; 20 (2): 352–357. DOI: 10.36359/scivp.2019-20-2.46. (in Ukrainian)
  17. Kosinov MV, Kaplunenko VG. Method for metal carboxylates obtaining “Nanotechnology of obtaining metal carboxylates”. Patent of Ukraine no. 38391 from 12.01.2009. Available at: https://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=128062 (in Ukrainian)
  18. Kovalchuk II, Kykish IB, Kaplunenko VH. Influence of citrate microelements on the reproductive capacity of queen bees. Actual problems of natural sciences: modern scientific discussions. A collective monograph. Riga, Baltija Publishing, 2020: 87–110. DOI: 10.30525/978-9934-26-025-4-6. (in Ukrainian)
  19. Kuzmina NV, Ostapiv DD. SOD isozymes in diluted ejaculates of bulls. Anim. Genet. 2010; 44: 107–108. Available at: http://nbuv.gov.ua/UJRN/rgt_2010_44_37 (in Ukrainian)
  20. Leahy T, Rickard JP, Aitken RJ, de Graaf SP. D-penicillamine prevents ram sperm agglutination by reducing the disulphide bonds of a copper-binding sperm protein. 2016; 151 (5): 491–500. DOI: 10.1530/REP-15-0596.
  21. Maulana T, Said S. Kinematics motility of frozen-thawed X and Y sperm of Sumba Ongole bull. IOP Conf. Ser. Earth Environ. Sci. 2019; 387: 012030. DOI: 10.1088/1755-1315/387/1/012030.
  22. Nagata MPB, Egashira J, Katafuchi N, Endo K, Ogata K, Yamanaka K, Yamanouchi T, Matsuda H, Hashiyada Y, Yamashita K. Bovine sperm selection procedure prior to cryopreservation for improvement of post-thawed semen quality and fertility. Anim. Sci. Biotechnol. 2019; 10: 91. DOI: 10.1186/s40104-019-0395-9.
  23. Nakada K, Sato A, Yoshida K, Morita T, Tanaka H, Inoue SI, Yonekawa H, Hayashi JI. Mitochondria-related male infertility. PNAS. 2006; 103 (41): 15148–15153. DOI: 10.1073/pnas.0604641103.
  24. Nischemenko N, Kaplunenko V, Emelianenko A. Embryonic development of quails in the incubating eggs processing solution aquachelate germany. Bull. LNUVMBT. Ser. Vet. Sci. 2014; 16 (2/2): 258–264. Available at: http://nbuv.gov.ua/UJRN/nvlnu_2014_16_2%282%29__44. (in Ukrainian)
  25. Pal RP, Mani V, Mir SH, Singh RK, Sharma R. Importance of trace minerals in the ration of breeding bull — a review. J. Curr. Microbiol. App. Sci. 2017; 6 (11): 218–224. DOI: 10.20546/ijcmas.2017.611.026.
  26. Rokotyanska VO. The influence of nanoaquachelates on the biological quality of sperm. Bull. Agr. Sci. Black Sea Region. 2018; 3 (99): 56–60. DOI: 10.31521/2313-092X/2018-3(99)-9. (in Ukrainian)
  27. Rowe MP, Powell JG, Kegley EB, Lester TD, Rorie RW. Effect of supplemental tracemineral source on bull semen quality. Anim. Sci. 2014; 30 (1): 68–73. DOI: 10.15232/S1080-7446(15)30085-1.
  28. Salamon S, Maxwell WMC. Frozen storage of ram semen I. Processing, freezing, thawing and fertility after cervical insemination. Reprod. Sci. 1995; 37 (3–4): 185–249. DOI: 10.1016/0378-4320(94)01327-I.
  29. Salamon S, Maxwell WMC. Storage of ram semen. Reprod. Sci. 2000; 62 (1–3): 77–111. DOI: 10.1016/S0378-4320(00)00155-X.
  30. Sengupta P. Environmental and occupational exposure of metals and their role in male reproductive functions. A review. Drug Chem. Toxicol. 2013; 36 (3): 353–368. DOI: 10.3109/01480545.2012.710631.
  31. Serdyuk AM, Gulich MP, Kaplunenko VG, Kosinov MV. Nanotechnologies of micronutrients: problems, prospects and ways to eliminate the deficiency of macro- and microelements. NAMS Ukraine. 2010; 16 (1): 107–114. (in Ukrainian)
  32. Skrzycki M, Czeczot H. Extracellular superoxide dismutase (EC–SOD) — structure, properties and functions. Hygiene Exp. Med. 2004; 24 (58): 301–311. PMID: 15280800 (in Polish)
  33. Tekin N, Uysal O, Akçay E, Yavaş İ. Effects of different taurine doses and freezing rate on freezing of row semen. Ankara Üniv. Vet. Fak. Derg. 2006; 53 (3): 179–184. Available at: http://vetjournal.ankara.edu.tr/en/pub/issue/47514/599969 (in Turkish)
  34. Uysal O, Bucak MN. Effects of oxidized glutathione, bovine serum albumin, cysteine and lycopene on the quality of frozen-thawed ram semen. Acta Vet. Brno. 2007; 76 (3): 383–390. DOI: 10.2754/avb200776030383.
  35. Vlizlo VV. (ed.). Laboratory Methods in Biology, Stockbreeding and Veterinary Medicine. Lviv, Spolom Publ., 2012: 764 p. (in Ukrainian)
  36. Vlizlo V, Bashchenko M, Iskra R, Fedoruk R, Zhukorskyi O, Mezentseva L. Nanotechnologies and their application in animal husbandry and veterinary medicine. Agr. Sci. 2015; 93 (11): 5–9. DOI: 10.31073/agrovisnyk201511-01. Available at: https://agrovisnyk.com/index.php/agrovisnyk/article/view/178 (in Ukrainian)
  37. Vlizlo VV, Fedoruk RS, Iskra RJ. Biological effect of functional nanomaterials in various species of animals. Agr. Sci. 2018; 96 (11): 80–86. DOI: 10.31073/agrovisnyk201811-11. (in Ukrainian)
  38. Wirth JJ, Mijal RS. Adverse effects of low level heavy metal exposure on male reproductive function. Biol. Reprod. Med. 2010; 56 (2): 147–167. DOI: 10.3109/19396360903582216.
  39. Yaremchuk I, Kuzmina N, Ostapiv D, Sharan M, Kava S. Oxidative processes intensity and quallity of bull semen when adding microelements nanosuccinate compounds. Bull. LNUVMBT Ser. Vet. Sci. 2017; 19 (77): 185–189. DOI: 10.15421/nvlvet7740. (in Ukrainian)
  40. Yaremchuk IM, Sharan MM. Modern analysis capabilities sperm quality and sperm dose calculation. Bìol. Tvarin. 2012; 14 (1–2): 697–703. Available at: http://aminbiol.com.ua/index.php/archive?catid=1:2013-02-15-09-09-13&id=203:2013-03-09-12-31-38 (in Ukrainian)

Search