Download full text in PDF

Bìol. Tvarin. 2023; 25 (2): 23–32.
https://doi.org/10.15407/animbiol25.02.023
Received 02.03.2023 ▪ Revision 15.04.2023 ▪ Accepted 25.06.2023 ▪ Published online 30.06.2023


On sensitivity to antibacterial preparations of strains of Bacillus spp. with a high level of antagonistic activity for the production of probiotics

O. M. Chechet, V. L. Kovalenko, O. I. Horbatyuk, N. V. Kuryata, G. A. Buchkovska, I. V. Musiets, L. V. Shalimova, D. O. Ordynska, L. V. Balanchuk, N. V. Shchur, L. V. Togachynska

This email address is being protected from spambots. You need JavaScript enabled to view it.

State Research Institute for Laboratory Diagnostics and Veterinary-Sanitary Examination, 30 Donetska str., Kyiv, 03151, Ukraine


The development of organic livestock farming, in particular poultry farming, which Ukraine is targeting, requires a radical change in approaches to the prevention and treatment of infectious diseases. The macroorganism and microbiota of the gastrointestinal tract constitute a single ecological system with homeostatic balance. However, its violation creates a threat of an imbalance of intestinal normal flora and the development of diseases of bacterial etiology in poultry. Considering this, there is a growing need for the development and use of probiotic preparations. The high antagonistic potential of bacteria of the genus Bacillus in relation to other pathogens causes scientific and industrial interest in the development of probiotics with their involvement in the composition of these bacteria as an alternative to antibiotics. But due to the existence of risks of direct transfer of R-plasmids of antibiotic resistance to the biotic microflora of the gastrointestinal tract together with probiotic strains when they acquire resistance, promising strains of bacteria of the genus Bacillus should be tested for sensitivity to antibiotic drugs. We selected promising probiotic strains with a high level of antagonism, Bacillus subtilis Bs-5 and Bs-9, Bacillus licheniformis Bfl-1 and Bfl-4, Bacillus coagulans Bcg-5, Bacillus amyloliquefaciens Baf-1 and Baf-3 showed full sensitivity to the applied antibiotics — representatives of the groups of carbapenems, fluoroquinolones, glycopeptides, lincosamides, macroliths and oxazolidones. These strains were recommended as probiotic, antibiotic sensitive, safe and promising for their use in the design of probiotic preparations. The obtained results of laboratory studies of other strains of B. subtilis, B. licheniformis, B. coagulans, B. amyloliquefaciens proved the presence among them of bacteria polyresistant to fluoroquinolone, carbapenem, macrolide and glycopeptide antibiotics.

Key words: antibiotic resistance, antagonistic activity, probiotic strains, Bacillus subtilis, Bacillus licheniformis, Bacillus coagulans, Bacillus amyloliquefaciens


  1. Ashraf R, Shah NP. Immune system stimulation by probiotic microorganisms. Rev. Food Sci. Nutr. 2014; 54 (7): 938–956. DOI: 10.1080/10408398.2011.619671.
  2. Babenko LP, Tymoshok NO, Safronova LA, Demchenko OM, Zaitseva GM, Lazarenko LM, Spivak MJ. Antimicrobial and therapeutic effect of probiotics in cases of experimental purulent wounds. Diversity. 2022; 30 (1): 22–30. DOI: 10.15421/012203.
  3. Behnsen J, Deriu E, Sassone-Corsi M, Raffatellu M. Probiotics: properties, examples, and specific applications. CSH Perspect. Med. 2013; 3 (3): a010074. DOI: 10.1101/cshperspect.a010074.
  4. Cassir N, Rolain JM, Brouqui P. A new strategy to fight antimicrobial resistance: the revival of old antibiotics. Microbiol. 2014; 5: 551 p. DOI: 10.3389/fmicb.2014.00551.
  5. Chechet OM, Kovalenko VL, Horbatyuk OI, Gaidei OS, Kravtsova OL, Andriyashchuk VO, Musiets IV, Ordynska DO. Antagonistic properties of a probiotic preparation with bacteria of the genera Bacillus and Enterococcus. Mech. Biosys. 2022; 13 (4): 362–366. DOI: 10.15421/022247.
  6. Cherny N, Kulak V. The resistance and productivity of rabbits at use of probiotic “Evitaliya” in terms of regulatory climate. Mess. LNUVMBT Ser. Vet. Sci. 2016; 18 (2/66): 192–196. DOI: 10.15421/nvlvet6639.
  7. Dyshlyuk NV, Orlova AV. Structure’s features of esophagus and it’s immune formations of quails. Mess. LNUVMBT Ser. Vet. Sci. 2017; 19 (77): 3–6. DOI: 10.15421/nvlvet7701. (in Ukrainian)
  8. Di Criscio T, Fratianni A, Mignogna R, Cinquanta L, Coppola R, Sorrentino E, Panfili G. Production of functional probiotic, prebiotic and synbiotic ice creams. Dairy Sci. 2010; 93 (10): 4555–4564. DOI: 10.3168/jds.2010-3355.
  9. Fanelli U, Chiné V, Pappalardo M, Gismondi P, Esposito S. Improving the quality of hospital antibiotic use: impact on multidrug-resistant bacterial infections in children. Pharmacol. 2020; 11: 745. DOI: 10.3389/fphar.2020.00745.
  10. Feshchenko YI, Humeniuk MI, Denysov OS. Antibiotic resistance of microorganisms. State of the problem and the way of decision. Chemother. J. 2010; 1–2 (23): 4–10. Available at: http://www.ifp.kiev.ua/doc/journals/uhj/10/pdf10-(1-2)/4.pdf (in Ukrainian)
  11. Hopchuk OM, Herasymova TV, Morozova OV. Probiotics: a modern perspective on therapeutic efficacy. Aspects Women’s Health. 2015; 6 (92): 56–61. Available at: https://mazg.com.ua/ua/archive/2015/6%2892%29/pages-56-61/probiotiki-suchasniy-poglyad-na-terapevtichnu-efektivnist#Probiotiki%3A_suchasniy_poglyad_na_terapevtichnu_efektivnist (in Ukrainian)
  12. Huyghebaert G, Ducatelle R, Immerseel FV. An update on alternatives to antimicrobial growth promoters for broilers. SWorld J. 2014; 187 (2): 182–188. https://doi.org/10.1016/j.tvjl.2010.03.003.
  13. Iegorov B, Kananykhina O, Turpurova T. Probiotic feed additives in fattening agricultural animals. Grain Prod. Mixed Fodders. 2022; 21 (4): 25–31. DOI: 10.15673/gpmf.v21i4.2250.
  14. Kachkin DV, Khorolskaya JI, Ivanova JS, Rubel AA. An efficient method for isolation of plasmid DNA for transfection of mammalian cell cultures. Methods Protoc. 2020; 3 (4): 69. DOI: 10.3390/mps3040069.
  15. Khariv M, Gutyj B, Ohorodnyk N, Vishchur O, Khariv I, Solovodzinska I, Mudrak D, Grymak C, Bodnar P. Activity of the T- and B-system of the cell immunity of animals under conditions of oxidation stress and effects of the liposomal drug. J. Ecol. 2017; 7 (4): 536–541. DOI: 10.15421/2017_157.
  16. Klaenhammer TR, Kleerebezem M, Kopp MV, Rescigno M. The impact of probiotics and prebiotics on the immune system. Rev. Immunol. 2012; 12: 728–734. DOI: 10.1038/nri3312.
  17. Kotsyumbas G, Kostynjuk A, Mysiv O, Fedyk Y. Histological, histochemical characteristics of duodenal intestine of hen-broilers for feeding with high content of probiotic supplements. Mess. LNUVMBT Ser. Vet. Sci. 2017; 19 (77): 71–75. DOI: 10.15421/nvlvet7717. (in Ukrainian)
  18. Kucheruk MD, Zasekin DA, Dymko RO. Microbiological and sanitary-hygienic significance of intestinal eubiozus in agricultural animals. Ecol. J. 2018; 8 (2): 287–293. DOI: 10.15421/2018_340. Available at: https://www.ujecology.com/abstract/microbiological-and-sanitaryhygienic-significance-of-intestinal-eubiozus-in-agricultural-animals-1264.html (in Ukrainian)
  19. Kucheruk MD, Zasekin DA, Dymko RO, Shcherbina OA. Sanitary and hygienic conditions of keeping poultry under organic farming as a factor of productivity. Env. Use Ukr. 2017; 9 (5–6): 116–124. DOI: 10.31548/bio2017.05.015.
  20. Lutgendorff F, Nijmeijer RM, Sandström PA, Trulsson LM, Magnusson KE, Timmerman HM, van Minnen LP, Rijkers GT, Gooszen HG, Akkermans LM, Söderholm Probiotics prevent intestinal barrier dysfunction in acute pancreatitis in rats via induction of ileal mucosal glutathione biosynthesis. PLoS ONE. 2009; 4 (2), e4512. DOI: 10.1371/journal.pone.0004512.
  21. Matseliukh OV, Safronova LA, Varbanets LD. Probiotic strains of Bacillus amyloliquefaciens plantarum as proteinase producers. Biotechnologia Acta. 2015; 8 (2): 84–90. DOI: 10.15407/biotech8.02.084.
  22. Medvid SM, Hunchak AV, Stefanishyn OM, Pashchenko AG. The microbiota composition of broiler chickens for action of bioelements citrates. Mess. LNUVMBT Ser. Agricult. Sci. 2017; 19 (74): 224–228. Available at: https://nvlvet.com.ua/index.php/agriculture/article/view/2333 (in Ukrainian)
  23. Mehta R, Dedina L, O’Brien PJ. Rescuing hepatocytes from iron-catalyzed oxidative stress using vitamins B1 and B6. In Vitro. 2011; 25 (5): 1114–1122. DOI: 10.1016/j.tiv.2011.03.015.
  24. Milian VO, Kharkhota MA, Nechypurenko OO. Study of probiotic properties of strains of Bacillus sp.1. and B. amyloliquefaciens UKM B-5113. ScienceRise. 2014; 5 (1/5): 15–22. DOI: 10.15587/2313-8416.2014.32023. (in Ukrainian)
  25. Nykytenko VY, Stadnikov AA, Kopylov VA. Bacterial translocation from the gastrointestinal tract in healthy and injured rats. Wound Care. 2011; 20 (3): 114–122. DOI: 10.12968/jowc.2011.20.3.114.
  26. Pavlova I. Effect of probiotics on doxycyline disposition in gastro-intestinal tract of poultry. J. Vet. Med. 2015; 18 (3): 248–257. DOI: 10.15547/bjvm.908.
  27. Pitino I, Randazzo CL, Mandalari G, Lo Curto A, Faulks RM, Le Marc Y, Bisignano C, Caggia C, Wickham MSJ. Survival of Lactobacillus rhamnosus strains in the upper gastrointestinal tract. Food Microbiol. 2010; 27 (8): 1121–1127. DOI: 10.1016/j.fm.2010.07.019.
  28. Pitout JD, Laupland KB. Extended-spectrum β-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect. Diseases. 2008; 8 (3): 159–166. DOI: 10.1016/S1473-3099(08)70041-0.
  29. Romaniuk LI, Kravets NY, Klymniuk SI, Kopcha VS, Dronova OY. Antibiotic-resistance of opportunistic microorganisms: topicality, conditions of emergency, ways of overcome. Diseases. 2019; 4: 63–71. DOI: 10.11603/1681-2727.2019.4.10965. (in Ukrainian)
  30. Romanovych MM. The dynamics of humoral protection factors in broilers under the conditions of probiotic preparations application. Mess. LNUVMBT Ser. Vet. Sci. 2018; 20 (83): 264–267. DOI: 10.15421/nvlvet8352. (in Ukrainian)
  31. Salmanov AH, Muzyka VP. Combating antibiotic resistance based on the principles of the “One Health” concept. Antibiot. Probiot. 2017; 1 (2): 8–29. DOI: 10.31405/ijap.2-1.18.06.
  32. Shchur N, Chechet O, Mazur T, Martyniuk O, Gorbatiuk O, Buchkovska H, Musiets I, Ordynska D, Finkova O, Moskalenko L, Ponomaryova-Gerasimyuk T, Lusta M, Nedosekov V. Prevalence and antimicrobial resistance of campylobacter isolated from animals and poultry in Ukraine. Anim. Vet. Sci. 2023; 11 (5): 852–863. DOI: 10.17582/journal.aavs/2023/11.5.852.863.
  33. Shkromada OI, Dudchenko YA. Study of the antimicrobial activity of probiotic strains of Bacillus. SNAU. Ser. Vet. Med. 2021; 4 (55): 38–43. DOI: 10.32845/bsnau.vet.2021.4.6. (in Ukrainian)
  34. Smet A, Martel A, Persoons D, Dewulf J, Heyndrickx M, Herman L, Haesebrouck F, Butaye Broad-spectrum β-lactamases among Enterobacteriaceae of animal origin: molecular aspects, mobility and impact on public health. FEMS Microbiol. Rev. 2010; 34 (3): 295–316. DOI: 10.1111/j.1574-6976.2009.00198.x.
  35. Tenover FC. Mechanisms of antimicrobial resistance in bacteria. J. Med. 2006; 119 (6/1): 3–10. DOI: 10.1016/j.amjmed.2006.03.011.
  36. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 12.0, 2022, valid from 2022-01-01. Available at: https://www.eucast.org
  37. Weiß CH. StatSoft, Inc., Tulsa, OK.: Statistica, version 8. AStA Adv. Stat. Analysis. 2007; 91 (3): 339–341. DOI: 10.1007/s10182-007-0038-x.
  38. Zabrovskaya AV. Sensitivity to antimicrobial preparations of microorganisms isolated from agricultural animals and from livestock production. VetPharma. 2012; 5: 20–24.

Search