Bìol. Tvarin, 2017, Volume 19, Issue 1, pp. 29–36

http://doi.org/10.15407/animbiol19.01.029

CYTOTOXICITY OF NANOPOLYMERS IN COMPLEXES WITH MICROELEMENTS

V. V. Vlizlo1, D. D. Ostapiv2, B. O. Chekh2, M. I. Nahornyak3, V. V. Oleksa3

This email address is being protected from spambots. You need JavaScript enabled to view it.

1Institute of Agriculture Carpathian region NAAS,
5 Hrushevskoho str., Obroshyno village, Lviv region., 81115, Ukraine

2Institute of Animal Biology NAAS,
38 Vasyl Stus st., Lviv 79034, Ukraine

3National University “Lviv Polytechnic”, department of Organic Chemistry,
2 St. Yura square, Lviv 79013, Ukraine

This article presents the studing of cytotoxicity of complexes of elements (Fe, Zn, Cu, Mn) and nanopolymer-transporter derived from pseudopolyamino acids (polyoxyethylene derivatives of glutamic acid).

Polyoxyethylene N-derivatives of glutamic acid with molecular weight of polyoxyethylene fragment 400, 600 and 1500 Dalton were used for nanopolymer synthesis. Nanopolymer were combined with aqueous solutions of microelements salts (CuSO4 • 5H2O, MnSO4  • H2O, ZnCl2, Fe(NH4)2(SO4)2 • 6H2O). One gram of complexes of nanopolymer and microelements contains: Fe — 0.03–0.05 mmol, Zn — 0.0319 mmol, Mg — 0.0359 mmol and Cu — 0.0222 mmol. We used bovine sperm for cells for studying the cytoxicity of nanopolymer complexes. Sperm was diluted by lactose-yolk-glycerine diluent and divided into four groups: intact control group and three experimental groups with addition of researched nanopolymer in complexes with microelements in doses of 0.01, 0.05 and 0.1 ml. We determined sperm cells survival time, respiratory activity, red/ox activity and activity of succinate dehydrogenase (SDG) in control and experimental groups.

We found that nanopolymer in complexes with microelements (Fe, Zn, Cu, Mn) in dose 0.01 ml had no effect on red/ox activity of sperm cells, but doses of 0.05 and 0.1 ml reduced it. Results show unchanged respiratory and red/ox activity of sperm cells after addition of nanopolymer in complexes with microelements in dose 0.01 ml, but increased doses of complexes lead to negative impact on sperm cells respiratory and red/ox activity. The highest negative correlation (η = –0.769) between doses of nanopolymer-transporter derived from pseudo amino acids and mitochondrial SDG activity was detected at addition of Cu-N-polyoxyethylene derivative of glutamic acid in dose of 0.1 ml. Addition of nanopolymer in complexes with microelements in high doses (0.05 and 0.1 ml) to cell culture was characterized by cytotoxic effect on cell physiological parameters (time of sperm cells survival) and addition of nanopolymer in complexes with microelements in low dose (0.01 ml) was non-toxic for cells.

Keywords: TRANSPORTER NANOPOLMERS, MICROELEMENTS (FE, ZN, CU, MN), PSEUDOPOLYAMINO ACIDS, CYTOTOXICITY

1. Chekh B., Ferens M., Martyn Y., Ostapiv D., Vlizlo V. Functional and structural state of rats’ kidneys and liver under the influence of nano-polymer based on pseudopolyamino acids. The Animal biology, 2016, vol. 18, no. 3, pp. 107–113. https://doi.org/10.15407/animbiol18.03.107
2. Chuhriy B. N., Klevets L. A., Ostapiv D. D. Colorimetric method for determining succinate dehydrogenase activity in bovine sperm. Journal of Agricultural Science, 1995, vol. 11, pp. 73–75. (in Ukrainian)
3. Dirksen G., Gründer H.-D. Stöber (Hrsg.)., M. Innere Medizin und Chirurgie des Rindes. Berlin, Parey, 2002, 1283 p.
4. Klitsenko G. T., Kulyk M. F., Kosenko M. V. Mineral nutrition of animals. Kyiv, Svit, 2001, 576 p. (in Ukrainian)
5. Kuzminov O., Ostapiv D., Alekhina T. Evaluation of cytotoxic action of antihistamines — desloratadine and loratadine — using bulls spermatozoa as a test object. Visn. Dnipropetr. Univ. Ser. Biol. Med., 2014, vol. 5, no. 1, pp. 3–6. (in Ukrainian) https://doi.org/10.15421/021401
6. Levcheko V. I., Vlizlo V. V., Kondrakhin I. P. Veterinary clinical biochemistry. Bila Tserkva, BNAU, 2002, 400 p. (in Ukrainian)
7. Levchenko V. I., Vlizlo V. V., Kondrakhin I. P. Internal animal diseases. Part 2. Bila Tserkva, BNAU, 2015, 610 p. (in Ukrainian)
8. Plohinsky N. A. Biometrics. Moscow, MNU, 1970, 367 p. (in Russian)
9. Stolz K. F., Mosolov I. M., Dronov L. A. Amperometric determination of ferrocyanide in the presence of subcellular structures. Biochemical methods, Nauka, 1980, pp. 147–150. (in Russian)
10. Varvarenko S. M., Samaryk V. V., Vlizlo V. V., Ostapiv D. D. Fluorescein-containing theranostics based on the pseudo-poly(amino acid)s for monitoring of drug delivery and release. Polymer Journal, 2015, vol. 37, no. 2, pp. 193–199. (in Ukrainian) https://doi.org/10.15407/polymerj.37.02.193
11. Vlizlo V. V., Sologub L. I., Yanovich V. G., Antonyak G. L., Yanovich D. O. Biochemical basis of valuation of cattle mineral nutrition. Trace minerals. The Animal Biology, 2006, vol. 8, no. 1, pp. 41–62. (in Ukrainian)
12. Zacharenko M. O., Shevchenko V. M., Mykhalska V. M., Maluga L. V., Skyba O. O. The role of trace elements in animal life. Ukrainian veterinary medicine, 2004, vol. 2, pp. 13–16. (in Ukrainian)

Download full text in PDF format

Search