Download full text in PDF

Bìol. Tvarin. 2023; 25 (4): 17–25.
https://doi.org/10.15407/animbiol25.04.017
Received 16.08.2023 ▪ Revision 26.09.2023 ▪ Accepted 22.12.2023 ▪ Published online 29.12.2023


Microbiological monitoring of the prevalence of mastitis in cows in livestock farms among different regions of Ukraine during 20182022

O. Chechet, O. Gorbatiuk, O. Pyskun, I. Musiiets, M. Romanko, G. Buchkovska, N. Kuriata, D. Ordynska, L. Chalimova, N. Mekh, L. Balanchuk, LTogachynska, M. Kuchynskyi

This email address is being protected from spambots. You need JavaScript enabled to view it.

State Research Institute for Laboratory Diagnostics and Veterinary-Sanitary Examination, 30 Donetska str., Kyiv 03151, Ukraine


Milk and dairy products are one of the most important raw materials that play a vital role in the nutritional structure of the Ukrainian population. The safety and quality of raw milk is the basis for dairy production. In view of the above, there is a need to conduct microbiological tests of milk samples from cows to detect mastitis. The issues of determining the somatic cell count (SCC), bacterial contamination (BCM), Escherichia coli bacteria (ECB), and the quantitative species composition of pathogenic microorganisms are relevant, as they provide an opportunity to assess the epizootic situation regarding the prevalence of cow mastitis in livestock farms in different regions of Ukraine, to establish the dominant etiological factors that cause mastitis, and to prescribe treatment and preventive measures to prevent further deterioration of the situation. The results of our microbiological monitoring studies on the prevalence of cow mastitis showed a trend towards an increase in their number, as evidenced by an increase in the SCC from 12% in 2018 to 41.5% in 2021; an increase in BCM from 8.1% to 37.3%, respectively. For the period from 2018 to 2021 inclusive, the number of pathogenic bacteria of the coccal group, in particular Staphylococcus spp. (80.0% of all isolates), Streptococcus spp. (28.1%, respectively), confirmed their main role in the formation of external and internal etiological factors that cause udder lesions in cows In terms of the number of detected ECB, there was a tendency to reduce, which indicates a decrease in their impact on the etiological factors that provoke mastitis in cows. The test results for 2022 showed a sharp drop in the delivery of milk samples for microbiological testing, which was due to the impact of political, social, economic, and other factors on the livestock industry due to military aggression in Ukraine.

Key words: milk, mastitis, somatic cells, bacterial contamination, Staphylococcus spp., Streptococcus spp., Listeria monocytogenes, Pseudomonas spp., Salmonella spp.


  1. Bonestroo J, Fall N, Hogeveen H, Emanuelson U, Klaas IC, Voort M. The costs of chronic mastitis: A simulation study of an automatic milking system farm. Vet. Med. 2023; 210: 105799. DOI: 10.1016/j.prevetmed.2022.105799.
  2. Chen H, Weersink A, Kelton D, Massow M. Estimating milk loss based on somatic cell count at the cow and herd level. Dairy Sci. 2021; 104 (7): 7919–7931. DOI: 10.3168/jds.2020-18517.
  3. Driscoll JA, Brody SL, Kollef MH. The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa Drugs. 2007; 67 (3): 351–368. DOI: 10.2165/00003495-200767030-00003.
  4. Eleodoro JI, Fagnani R. Etiological agents and bacterial sensitivity in subclinical mastitis in Brazil: a ten-year systematic review. Ital. 2022; 58 (4): 2601. DOI: 10.12834/VetIt.2601.17023.2.
  5. Giltner CL, Van Schaik EJ, Audette GF, Kao D, Hodges RS, Hassett DJ, Irvin RT. The Pseudomonas aeruginosa type IV pilin receptor binding domain functions as an adhesin for both biotic and abiotic surfaces. Microbiol. 2006; 59 (4): 1083–1096. DOI: 10.1111/j.1365-2958.2005.05002.x.
  6. Guzmán-Luna P, Nag R, Martínez I, Mauricio-Iglesias M, Hospido A, Cummins E. Quantifying current and future raw milk losses due to bovine mastitis on European dairy farms under climate change scenarios. Science Total Environ. 2022; 833: 155149. DOI: 10.1016/j.scitotenv.2022.155149.
  7. Harkavenko TO, Lototskyi VV, Bergilevich OM, Kasyanchuk VV, Kozytska TG, & Dyachenko TO. Counting of somatic cells in the udder secretion of individual cows and collected raw milk by the microscopic method, determination of the geometric mean. The methodological recommendations. Kyiv, SSRILDVSE, 2021; 80 p. (in Ukrainian)
  8. ISO 13366-1:2008. Milk. Enumeration of somatic cell. Part 1: Microscopic method (Reference method). Available at: https://www.iso.org/standard/40259.html
  9. Jones GM, Pearson RE, Clabaugh GA, Heald CW. Relationships between somatic cell counts and milk production. Dairy Sci. 1984; 67 (8): 1823–1831. DOI: 10.3168/jds.S0022-0302(84)81510-6.
  10. Kasalica A, Vuković V, Vranješ A, Memiši N. Listeria monocytogenes in milk and dairy products. Anim. Husb. 2011; 27 (3): 1067–1082. DOI: 10.2298/BAH1103067K.
  11. Kejdova Rysova L, Duchacek J, Legarova V, Gasparik M, Sebova A, Hermanova S, Codl R, Pytlik J, Stadnik L, Nejeschlebova H. Dynamics of milk parameters of quarter samples before and after the dry period on Czech farms. 2023; 13 (4): 712. DOI: 10.3390/ani13040712.
  12. Lee SHI, Cappato LP, Guimarães JT, Balthazar CF, Rocha RS, Franco LT, da Cruz AG, Corassin CH, de Oliveira CAF. Listeria monocytogenes in milk: Occurrence and recent advances in methods for inactivation. 2019; 5 (1): 14. DOI: 10.3390/beverages5010014.
  13. Li W, Liao S, Tsou C. A novel sensing chip with dual-coil inductance for determining raw milk quality. Actuat. A: Physl. 2016; 241: 96–103. DOI: 10.1016/j.sna.2016.01.035.
  14. Lin H, Shavezipur M, Yousef A, Maleky F. Prediction of growth of Pseudomonas fluorescens in milk during storage under fluctuating temperature. Dairy Sci. 2016; 99 (3): 1822–1830. DOI: 10.3168/jds.2015-10179.
  15. Murinda SE, Nguyen LT, Nam HM, Almeida RA, Headrick SJ, Oliver SP. Detection of sorbitol-negative and sorbitol-positive Shiga toxin-producing Escherichia coli, Listeria monocytogenes, Campylobacter jejuni, and Salmonella in dairy farm environmental samples. Foodborne Pathogen. Disease. 2004; 1 (2): 97–104. DOI: 10.1089/153531404323143611.
  16. Nero LA, De Mattos MR, M. De Aguiar Ferreira Barros, Ortolani MBN, Beloti V, De Melo Franco BDG. Listeria monocytogenes and Salmonella in raw milk produced in Brazil: occurrence and interference of indigenous microbiota in their isolation and development. Zoonos. Publ. Health. 2008; 55 (6): 299–305. DOI: 10.1111/j.1863-2378.2008.01130.x.
  17. Order of the Ministry of Agrarian and Food Policy of Ukraine No. 118 from March 12, 2019. On Approval of the Requirements for the Milk and Dairy Products Safety and Quality. Available at: https://zakon.rada.gov.ua/laws/show/z0593-19#n23 (in Ukrainian)
  18. Order of the Ministry of Agrarian and Food Policy of Ukraine No. 595 from August 22, 2022 On Amendments to the Order of the Ministry of Agrarian Policy and Food of Ukraine from March 12, 2019 No. 118. Available at: https://zakon.rada.gov.ua/laws/show/z1077-22#Text (in Ukrainian)
  19. Pakrashi A, Ryan C, Guéret C, Berry DP, Corcoran M, Keane MT, Mac Namee B. Early detection of subclinical mastitis in lactating dairy cows using cow-level features. Dairy Sci. 2023; 106 (7): 4978–4990. DOI: 10.3168/jds.2022-22803.
  20. Pangloli P, Dje Y, Ahmed O, Doane CA, Oliver SP, Draughon FA. Seasonal incidence and molecular characterization of Salmonella from dairy cows, calves, and farm environment. Foodborne Pathogen. Disease. 2008; 5 (1): 87–96. DOI: 10.1089/fpd.2008.0048.
  21. Park S, Jung D, Altshuler I, Kruban D, Dufour S, Ronholm J. A longitudinal census of the bacterial community in raw milk correlated with Staphylococcus aureus clinical mastitis infections in dairy cattle. Microbiome. 2022; 4 (1) :59. DOI: 10.1186/s42523-022-00211-x.
  22. Pier GB. Pseudomonas aeruginosa lipopolysaccharide: a major virulence factor, initiator of inflammation and target for effective immunity. J. Med. Microbiol. 2007; 297 (5): 277–295. DOI: 10.1016/j.ijmm.2007.03.012.
  23. Podhorecká K, Borková M, Šulc M, Seydlová R, Dragounová H, Švejcarová M, Peroutková J, Elich O. Somatic cell count in goat milk: an indirect quality indicator. 2021; 10 (5): 1046. DOI: 10.3390/foods10051046.
  24. Quigley L, O’Sullivan O, Stanton C, Beresford TP, Ross RP, Fitzgerald GF, Cotter PD. The complex microbiota of raw milk. FEMS Microbiol. Rev. 2013; 37 (5): 664–698. DOI: 10.1111/1574-6976.12030.
  25. Rainard P, Foucras G, Boichard D, Rupp R. Invited review: Low milk somatic cell count and susceptibility to mastitis. J. Dairy Sci. 2018; 101 (8): 6703–6714. DOI: 10.3168/jds.2018-14593.
  26. Regulation of the European Parliament and Council (EC) No. 853/2004 of April 29, 2004 on food hygiene, Chapter IX, Annex III. Available at: https://eur-lex.europa.eu/eli/reg/2004/853/oj
  27. Rodriguez Z, Kolar QK, Krogstad KC, Swartz TH, Yoon I, Bradford BJ, Ruegg PL. Evaluation of reticuloruminal temperature for the prediction of clinical mastitis in dairy cows challenged with Streptococcus uberis. Dairy Sci. 2023; 106 (2): 1360–1369. DOI: 10.3168/jds.2022-22421.
  28. Rossi RS, Amarante AF, Correia LBN, Guerra ST, Nobrega DB, Latosinski GS, Rossi BF, Rall VLM, Pantoja JCF. Diagnostic accuracy of Somaticell, California Mastitis Test, and microbiological examination of composite milk to detect Streptococcus agalactiae intramammary infections. Dairy Sci. 2018; 101 (11): 10220–10229. DOI: 10.3168/jds.2018-14753.
  29. Schukken YH, Wilson DJ, Welcome F, Garrison-Tikofsky L, Gonzalez RN. Monitoring udder health and milk quality using somatic cell counts. Res. 2003; 34 (5): 579–596. DOI: 10.1051/vetres:2003028.
  30. Sun X, Zhao R, Wang N, Zhang J, Xiao B, Huang F, Chen A. Milk somatic cell count: From conventional microscope method to new biosensor-based method. Trends Food Sci. Technol. 2023; 135: 102–114. DOI: 10.1016/j.tifs.2023.03.020.
  31. Tarnavskyi DV, Hirin SV, Hulii MA, Horenkova OK, Tkachenko TA, Tkachenko VV. A clinical case of catarrhal mastitis in a cow. Mess. LNUVMBT. Vet. Sci. 2022; 24 (108): 180–186. DOI: 10.32718/nvlvet10826. (in Ukrainian)
  32. Waage S, Jonsson P, Franklin A. Evaluation of a cow-side test for detection of gram-negative bacteria in milk from cows with mastitis. Acta Vet. Scand. 1994; 35 (2): 207–212. DOI: 10.1186/BF03548348.
  33. Weis D, Weifurtner M, Bruckmaier R. Teat anatomy and its relationship with quarter and udder milk flow characteristics in dairy cows. Dairy Sci. 2004; 87 (10): 3280–3289. DOI: 10.3168/jds.S0022-0302(04)73464-5.

Search