Bìol. Tvarin, 2017, Volume 19, Issue 2, pp. 9–15


MM. Akymyshyn

This email address is being protected from spambots. You need JavaScript enabled to view it.

Institute of animal biology NAAS,
38 V. Stusa str., Lviv 79034, Ukraine

Malate dehydrogenase (MDG) activity and isozyme content in ovarian tissues, follicle antral fluid and endometrium on different stages of folliculogenesis and luteogenesis, and at hypofunction were studied.

It is registered that MDG activity in ovarian tissues is the highest in follicle phase (1.0±0.21 nmol/min×mg of protein), it is lower on 20 % when ovary is in early corpus luteum state and the lowest at state of late corpus luteum (0.6±0.16 nmol/min×mg of protein). In endometrium in active ovarian phase activity of MDG is 0.9–1.3 nmol/min×mg of protein and indexes are on 55.6–69.3 % lower when hypofunction is present. In follicle antral fluid depending on physiological state of ovary activity of MDG is different. In follicles with size less than 4 mm the MDG activity is high (1.6±0.46 nmol/min×mg of protein) at state of follicle growth with size 47 mm is lower at states of early and late corpus luteum (0.6–0.7 nmol/min×mg of protein) and it is the lowest (0.4±0.06 nmol/min×mg of protein) when hypofunction is present. In tissues of gonads and antral fluid from ovarian follicles we registered three active MDG proteins, that correspond by elecrtoforetical mobility to two cytosol isozymes (MDG1 and MDG2) and one mitochondrial (MDG3). In ovarian tissue MDG1 and MDG2 content is high (33.744.9 %) and MDG3 content is low (18.8–27.1 %), and in endometrium the main part of enzyme falls on MDG2 (36.056.7 %) and less — on MDG1 (26.535.2 %) and MDG3 (16.729.0 %). In antral fluid from follicles content of MDG1 in state of early corpus luteum is the highest (52.560.9 %), content of MDG2 is the highest at state of late corpus luteum (43.956.1 %), and MDG3 in follicle growth (27.741.8 %). Correlation analysis showed that MDG activity in connection with physiological state change and when hypofunction is present has medium strength (η=0.353), and in endometrium is strong (η=0.799). Content of MDG3 in gonad tissue and MDG2 in endometrium with change of physiological state and when hypofunction is present correlates with medium force (η=0.509 і 0.325, correspondingly). Correlation ratio between size of follicle at early corpus luteum state and activity of MDG2 in antral fluid is curvilinear and has medium strength (η=0.382).


1. Al-Harbi M. S. Tissue-specific isoenzyme variations in Arabian camel. Camelus dromedaries. Advances in Bioscience and Biotechnology, 2012, vol. 3, pp. 863–868. https://doi.org/10.4236/abb.2012.37107
2. Daniš P, Farkas R. Hormone-dependent and hormone-independent control of metabolic and developmental functions of malate. Endocrine regulations, 2009, vol. 43, pp. 39–52. https://doi.org/10.4149/endo_2009_01_39
3. Dumollard R., Ward Z., Carroll J., Duchen M. R. Regulation of redox metabolism in the mouse oocyte and embryo. Development, 2007, vol. 134, pp. 455–465. https://doi.org/10.1242/dev.02744
4. Garbus J. Serum malate dehydrogenase isoenzymes as indicators of severe cellular injury. Clin. Chim. Acta, 1971, vol. 35, pp. 502−504. https://doi.org/10.1016/0009-8981(71)90229-4
5. Guimaraes A., da Cunha R. M. S., de Vasconcelos P. R. L., Guimaraes S. B. Glutamine and ornithine alpha-ketoglutarate supplementation on malate dehydrogenases expression in hepatectomized rats. Acta Cirurgica Brasileira, 2014, vol. 29, no. 6, pp. 366–371.
6. Huzyevaty O. Ye., Yasinsky V. V., Smulka L. V., Kolechko T. A. Evaluation of the functional state of the cow oocyte-cumulus complexes depending on the type of ovary. Journal of Agricultural Science, 1995, no. 11, pp. 94–98. (in Ukrainian)
7. Lane M., Gardner D. K. Mitochondrial malate-aspartate shuttle regulates mouse embryo nutrient consumption. J. Biol. Chem., 2005, vol. 280, pp. 18361–18367. https://doi.org/10.1074/jbc.M500174200
8. Lowry O. H., Rosebrough N. J, Fair A. L., Randall R. J. Protein measurement with Folin phenol reagent. J. Biol. Chem., 1951, vol. 193, pp. 264–275.
9. Mitchell M., Kara S., Cashman D., Gardner K., Jeremy G., Michelle T. Lane Disruption of Mitochondrial Malate-Aspartate Shuttle Activity in Mouse Blastocysts Impairs Viability and Fetal Growth. Biology of Reproduction, 2009, vol. 80, no. 2, pp. 295–301. https://doi.org/10.1095/biolreprod.108.069864
10. Minárik P, Tomáková N, Kollárová M, Antalík M. Malate Dehydrogenases — Structure and Function Gen. Physiol. Biophys., 2002, vol. 21, pp. 257–265.
11. Plohinsky N. A. Biometriya. Moscow, MGU, 1970, pp. 53–60. (in Russian)
12. Sharma R., Patnaik S. K. Differential Regulation of Malate Dehydrogenase Isoenzymes by Hydrocortisone in the Liver and Brain of Aging Rats. Embryologia, 2008, vol. 24, no. 5, pp. 501–505. https://doi.org/10.1111/j.1440-169X.1982.00501.x
13. Shyamal K., Dalores R., Terada M. Activities of Glucose Metabolic Enzymes in Human Preantral Follicles: In Vitro Modulation by Follicle-Stimulating Hormone, Luteinizing Hormone, Epidermal Growth Factor, Insulin-Like Growth Factor I, and Transforming Growth Factor β1. Biology of Reproduction, 1999, vol. 60, no. 3, pp. 763–768. https://doi.org/10.1095/biolreprod60.3.763
14. Vlizlo V. V., Fedoruk R. S., Ratych I. B. Laboratory methods of research in biology, animal husbandry and veterinary medicine. Lviv, Navy, 2012, p. 764. (in Ukrainian)
15. Wale P. L., Gardner D. K. Oxygen Regulates Amino Acid Turnover and Carbohydrate Uptake During the Preimplantation Period of Mouse Embryo Development. Biology of Reproduction, 2012, vol. 87, pp. 1–24. https://doi.org/10.1095/biolreprod.112.100552
16. Zhou S. L, Li M. Z., Li Q. H., Guan J. Q., Li X. W. Differential expression analysis of porcine MDH1, MDH2 and ME1 genes in adipose tissues. Genet. Mol. Res., 2012, vol. 11, no. 2, pp. 1254–1259. https://doi.org/10.4238/2012.May.9.4

Download full text in PDF format






WorldCat Logo