Bìol. Tvarin. 2022; 24 (3): 39–43.
Received 17.07.2022 ▪ Accepted 22.09.2022 ▪ Published online 01.10.2022

Key words: oxidative stress, reactive oxygen species, glutathione, antioxidant protection, chelate

Download full text in PDF


Biochemical effect of the Biophosphomag medication on the biochemical blood indicators in rats under oxidative stress conditions

RI. Palonko
This email address is being protected from spambots. You need JavaScript enabled to view it.
National University of Life and Environmental Sciences of Ukraine,
15 Heroyiv Oborony str., Kyiv, 03041, Ukraine

The study was aimed to examine the effects of the Biophosphomag medication on biochemical parameters of blood under induced oxidative stress in rats. For this purpose, we used 24 animals weighing 200±20 g. The animals were divided into 4 groups of 6 animals in each one and kept on a standard diet with access to water ad libitum. The 1st group was an intact control without oxidative stress and its correction; the 2nd was a control with induced oxidative stress and without its correction. The 3rd group received a 1% solution of magnesium sulfate intragastrically. The animals of the 4th group were administered Biophosphomag (a combined medication of magnesium and phosphorus based on casein) in a dose equivalent to magnesium sulfate by magnesium. Oxidative stress was induced with a single intragastric administration of paracetamol. The results of the serum analysis after the intake of medication showed, on the one hand, a decrease in the activity of the enzymes: alkaline phosphatase, alanine aminotransferase, α-amylase, aspartate aminotransferase, lactate dehydrogenase, glucose and TBA-active compounds concentration (P<0.05), and, on the other hand, an increase in the magnesium concentration and catalase activity. The obtained results indicate a higher bioavailability of magnesium in the composition of the Biophosphomag medication than in the composition of magnesium sulfate, which leads to a more significant hepatoprotective effect under conditions of induced oxidative damage to the liver. They can be an argument why Biophosphomag medication should be used in the correction of pathological processes accompanied by oxidative stress or as a source of magnesium with high bioavailability.


How to cite:

DSTU 8302:2015
Palonko R. Biochemical effect of the Biophosphomag medication on the biochemical blood indicators in rats under oxidative stress conditions. The animal biology. 2022. Vol. 24, no. 3. P. 39–43. http://dx.doi.org/10.15407/animbiol24.03.039
APA
Palonko, R. (2022). Biochemical effect of the Biophosphomag medication on the biochemical blood indicators in rats under oxidative stress conditions. The animal biology, 24(3), 39–43. http://dx.doi.org/10.15407/animbiol24.03.039
Vancouver
Palonko R. Biochemical effect of the Biophosphomag medication on the biochemical blood indicators in rats under oxidative stress conditions. The animal biology. 2022;24(3):39-43. http://dx.doi.org/10.15407/animbiol24.03.039
  1. Bahrami S, Shahriari A, Tavalla M, Azadmanesh S, Hamidinejat H. Blood levels of oxidant/antioxidant parameters in rats infected with Toxoplasma gondii. Med. Cell. Longev. 2016; 2016: 8045969. DOI: 10.1155/2016/8045969.
  2. Barnes PJ. Oxidative stress-based therapeutics in COPD. Redox Biol. 2020; 33: 101544. DOI: 10.1016/j.redox.2020.101544.
  3. Blair IA. Endogenous glutathione adducts. Drug Metab. 2006; 7 (8): 853–872. DOI: 10.2174/138920006779010601.
  4. Canayakin D, Bayir Y, Baygutalp NK, Karaoglan ES, Atmaca HT, Ozgeris FBK, Keles MS, Halici Z. Paracetamol-induced nephrotoxicity and oxidative stress in rats: The protective role of Nigella sativa. Biol. 2016; 54 (10): 2082–2091. DOI: 10.3109/13880209.2016.1145701.
  5. Chen Y, Xiong S, Zhao F, Lu X, Wu B, Yang B. Effect of magnesium on reducing the UV-induced oxidative damage in marrow mesenchymal stem cells. Biomed. Mat. Res. A. 2019; 107 (6): 1253–1263. DOI: 10.1002/jbm.a.36634.
  6. Dizdaroglu M, Jaruga P, Birincioglu M, Rodriguez H. Free radical-induced damage to DNA: Mechanisms and measurement. Free Rad. Biol. Med. 2002; 32 (11): 1102–1115. DOI: 10.1016/S0891-5849(02)00826-2.
  7. Erhirhie EO, Ihekwereme CP, Ilodigwe EE. Advances in acute toxicity testing: strengths, weaknesses and regulatory acceptance. Toxicol. 2018; 11 (1): 5–12. DOI: 10.2478/intox-2018-0001.
  8. Gröber U, Schmidt J, Kisters K. Magnesium in prevention and therapy. 2015; 7 (9): 8199–8226. DOI: 10.3390/nu7095388.
  9. Guo H, Sun J, Li D, Hu Y, Yu X, Hua H, Jing X, Chen F, Jia Z, Xu J. Shikonin attenuates acetaminophen-induced acute liver injury via inhibition of oxidative stress and inflammation. Pharmacotherapy. 2019; 112: 108704. DOI: 10.1016/j.biopha.2019.108704.
  10. Hadwan MH, Abed HN. Data supporting the spectrophotometric method for the estimation of catalase activity. Data Brief. 2015; 6: 194–199. DOI: 10.1016/j.dib.2015.12.012.
  11. Hax LT, Rincón JAA, Schneider A, Pegoraro LMC, Franco Collares L, Alves Pereira R, Pradieé J, Del Pino FAB, Nunes Corrêa M. Effect of butafosfan supplementation during oocyte maturation on bovine embryo development. Zygote. 2019; 27 (5): 321–328. DOI: 10.1017/S0967199419000327.
  12. Hybertson BM, Gao B, Bose SK, McCord JM. Oxidative stress in health and disease: The therapeutic potential of Nrf2 activation. Asp. Med. 2011; 32 (4–6): 234–246. DOI: 10.1016/j.mam.2011.10.006.
  13. Kaliaperumal R, Venkatachalam R, Nagarajan P, Sabapathy SK. Association of serum magnesium with oxidative stress in the pathogenesis of diabetic cataract. Trace Element Res. 2021; 199 (8): 2869–2873. DOI: 10.1007/s12011-020-02429-9.
  14. Kalsi SS, Wood DM, Waring WS, Dargan PI. Does cytochrome P450 liver isoenzyme induction increase the risk of liver toxicity after paracetamol overdose? Open Acc. Emerg. Med. 2011; 2011 (3): 69–76. DOI: 10.2147/OAEM.S24962.
  15. Kreipe L, Deniz A, Bruckmaier RM, van Dorland HA. First report about the mode of action of combined butafosfan and cyanocobalamin on hepatic metabolism in nonketotic early lactating cows. Dairy Sci. 2011; 94 (10): 4904–4914. DOI: 10.3168/jds.2010-4080.
  16. Kurhaluk N, Tkachenko H, Partyka T. Photoperiod-induced alterations in biomarkers of oxidative stress in rats of different ages and individual physiological reactivity. Bìol. Tvarin. 2022; 24 (1): 11–18. DOI: 10.15407/animbiol24.01.011.
  17. Kuzniar A, Mitura P, Kurys P, Szymonik-Lesiuk S, Florianczyk B, Stryjecka-Zimmer M. The influence of hypomagnesemia on erythrocyte antioxidant enzyme defence system in mice. Biometals. 2003; 16 (2): 349–357. DOI: 10.1023/A:1020632505289.
  18. Lv Y, Zhang B, Xing G, Wang F, Hu Z. Protective effect of naringenin against acetaminophen-induced acute liver injury in metallothionein (MT)-null mice. Food Funct. 2013; 4 (2): 297–302. DOI: 10.1039/C2FO30213F.
  19. Martin H, Richert L, Berthelot A. Magnesium deficiency induces apoptosis in primary cultures of rat hepatocytes. Nutr. 2003; 133 (8): 2505–2511. DOI: 10.1093/jn/133.8.2505.
  20. Melov S. Animal models of oxidative stress, aging, and therapeutic antioxidant interventions. J. Biochem. Cell Biol. 2002; 34 (11): 1395–1400. DOI: 10.1016/S1357-2725(02)00086-9.
  21. Mishra P, Pandey CM, Singh U, Keshri A, Sabaretnam M. Selection of appropriate statistical methods for data analysis. Card. Anaest. 2019; 22 (3): 297–301. DOI: 10.4103/aca.ACA_248_18.
  22. Morais JBS, Severo JS, Santos LR, de Sousa Melo SR, de Oliveira Santos R, de Oliveira ARS, Cruz KJC, do Nascimento Marreiro D. Role of magnesium in oxidative stress in individuals with obesity. Trace El. Res. 2017; 176 (1): 20–26. DOI: 10.1007/s12011-016-0793-1.
  23. Nagababu E, Rifkind JM, Boindala S, Nakka L. Assessment of antioxidant activity of eugenol in vitro and in vivo. In: Methods in molecular biology. 2010; 610: 165–180. DOI: 10.1007/978-1-60327-029-8_10.
  24. Nishikawa T, Bellance N, Damm A, Bing H, Zhu Z, Handa K, Yovchev MI, Sehgal V, Moss TJ, Oertel M, Ram PT, Pipinos II, Soto-Gutierrez A, Fox IJ, Nagrath D. A switch in the source of ATP production and a loss in capacity to perform glycolysis are hallmarks of hepatocyte failure in advance liver disease. Hepatol. 2014; 60 (6): 1203–1211. DOI: 10.1016/j.jhep.2014.02.014.
  25. Nolfi-Donegan D, Braganza A, Shiva S. Mitochondrial electron transport chain: Oxidative phosphorylation, oxidant production, and methods of measurement. Redox Biol. 2020; 37: 101674. DOI: 10.1016/j.redox.2020.101674.
  26. Palonko RI, Kalachniuk LH, Arnauta OV, Mykhailiuk MM, Arnauta NV, Pavlyuk OV, Fedyshyn PM. The method of the “Biophosphomag” veterinary drug producing. Patent UA for utility model no. U202105112 from 13.01.2022. Available at: https://sis.ukrpatent.org/uk/search/detail/1673135 (in Ukrainian)
  27. Papackova Z, Heczkova M, Dankova H, Sticova E, Lodererova A, Bartonova L, Poruba M, Cahova M. Silymarin prevents acetaminophen-induced hepatotoxicity in mice. PloS One. 2018; 13 (1): 1–20. DOI: 10.1371/journal.pone.0191353.
  28. Ratnam DV, Ankola DD, Bhardwaj V, Sahana DK, Ravi Kumar MNV. Role of antioxidants in prophylaxis and therapy: A pharmaceutical perspective. Contr. Release. 2006; 113 (3): 189–207. DOI: 10.1016/j.jconrel.2006.04.015.
  29. Rezzani R, Franco C. Liver, Oxidative stress and metabolic syndromes. Nutrients. 2021; 13 (2): 301. DOI: 10.3390/nu13020301.
  30. Rui L. Energy metabolism in the liver. Physiol. 2014; 4 (1): 177–197. DOI: 10.1002/cphy.c130024.
  31. Sies H. Oxidative stress: Oxidants and antioxidants. Physiol. 1997; 82 (2): 291–295. DOI: 10.1113/expphysiol.1997.sp004024.
  32. Simeonova R, Kondeva-Burdina M, Vitcheva V, Mitcheva M. Some in vitro/in vivo chemically-induced experimental models of liver oxidative stress in rats. BioMed Res. Int. 2014; 2014: 706302. DOI: 10.1155/2014/706302.
  33. Tarallo A, Damiano C, Strollo S, Minopoli N, Indrieri A, Polishchuk E, Zappa F, Nusco E, Fecarotta S, Porto C, Coletta M, Iacono R, Moracci M, Polishchuk R, Medina DL, Imbimbo P, Monti DM, De Matteis MA, Parenti G. Correction of oxidative stress enhances enzyme replacement therapy in Pompe disease. EMBO Mol. Med. 2021; 13 (11): e14434. DOI: 10.15252/emmm.202114434.
  34. Yan M, Huo Y, Yin S, Hu H. Mechanisms of acetaminophen-induced liver injury and its implications for therapeutic interventions. Redox Biol. 2018; 17: 274–283. DOI: 10.1016/j.redox.2018.04.019.

Search