Download full text in PDF
Bìol. Tvarin. 2023; 25 (3): 13–18.
https://doi.org/10.15407/animbiol25.03.013
Received 03.06.2023 ▪ Revision 13.07.2023 ▪ Accepted 22.09.2023 ▪ Published online 02.10.2023
The role of oil solutions of thiosulfonates in the modulation of antioxidant parameters in rat kidneys
N. M. Liubas, I. Ya. Oliynyk
This email address is being protected from spambots. You need JavaScript enabled to view it., This email address is being protected from spambots. You need JavaScript enabled to view it.
Institute of Animal Biology NAAS, 38 V. Stusa str., Lviv, 79034, Ukraine
This study investigated the influence of thiosulfonate esters, specifically S-ethyl-4-aminobenzenethiosulfonate (ETS), S-allyl-4-aminobenzenethiosulfonate (ATS), and S-allyl-4-acetylaminobenzenethiosulfonate (AATS), at a dose of 50 mg/kg body weight on the antioxidant defense system in rat kidneys. The kidneys are essential organs involved in maintaining metabolic homeostasis and they are constantly exposed to reactive oxygen species (ROS) and oxidative stress. The effectiveness of the antioxidant defense system was evaluated by measuring oxidative stress markers, including lipid peroxidation (LPO), as well as the activity of key antioxidant enzymes, such as catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GP), glutathione reductase (GR), and the level of reduced glutathione (GSH). Dysfunction of oxidant protection was observed with an oily diet, characterized by an increase in lipid hydroperoxide levels, a decrease in the SOD and catalase activity, and a decrease in the antioxidant activity of the entire glutathione chain. Administration of thiosulfonates, especially ETS and AATS, helped stabilize antioxidant protection. The beneficial antioxidant effects of thiosulfonates can be partially explained by their ability to prevent the formation of free radicals, can intercept, neutralize reactive oxygen species and other harmful substances that can damage body cells.
Key words: S-ethyl-4-aminobenzenethiosulfonate, S-allyl-4-aminobenzenethiosulfonate, S-allyl-4-acetylaminobenzenethiosulfonate, kidneys, antioxidant system
- Amaral EP, Foreman TW, Namasivayam S, Hilligan KL, Kauffman KD, Bomfim CCB, Costa DL, Barreto-Duarte B, Gurgel-Rocha C, Santana MF, Cordeiro-Santos M, Du Bruyn E, Riou C, Aberman K, Wilkinson RJ, Barber DL, Mayer-Barber KD, Andrade BB, Sher A. GPX4 regulates cellular necrosis and host resistance in Mycobacterium tuberculosis infection. Exp. Med. 2022; 219 (11): e20220504. DOI: 10.1084/jem.20220504.
- Ayepola OR, Cerf ME, Brooks NL, Oguntibeju OO. Kolaviron, a biflavonoid complex of Garcinia kola seeds modulates apoptosis by suppressing oxidative stress and inflammation in diabetes-induced nephrotoxic rats. Phytomedicine. 2014; 21 (14): 1785–1793. DOI: 10.1016/j.phymed.2014.09.006.
- Bijarnia RK, Bachtler M, Chandak PG, van Goor H, Pasch A. Sodium thiosulfate ameliorates oxidative stress and preserves renal function in hyperoxaluric rats. PloS One. 2015; 10 (4): e0124881. DOI: 10.1371/journal.pone.0124881.
- Brittebo EB, Eriksson C, Brandt I. Effects of glutathione-modulating agents on the covalent binding and toxicity of dichlobenil in the mouse olfactory mucosa. Appl. Pharmacol. 1992; 114 (1): 31–40. DOI: 10.1016/0041-008X(92)90093-8.
- Cui X, Yu X, Wu X, Huang L, Tian Y, Huang X, Zhang Z, Cheng Z, Guo Q, Zhang Y, Cai Y, Zhan Q. Acute kidney injury in patients with the coronavirus disease 2019: A multicenter study. Kidney Blood Press Res. 2020; 45 (4): 612–622. DOI: 10.1159/000509517.
- Esterbauer H, Schaur RJ, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Rad. Biol. Med. 1991; 11 (1): 81–128. DOI: 10.1016/0891-5849(91)90192-6.
- Guillamón E, Mut-Salud N, Rodríguez-Sojo MJ, Ruiz-Malagón AJ, Cuberos-Escobar A, Martínez-Férez A, Rodríguez-Nogales A, Gálvez J, Baños A. In vitro antitumor and anti-inflammatory activities of allium-derived compounds propyl propane thiosulfonate (PTSO) and propyl propane thiosulfinate (PTS). Nutrients. 2023; 15 (6): 1363. DOI: 10.3390/nu15061363.
- Gyurászová M, Gurecká R, Bábíčková J, Tóthová Ľ. Oxidative stress in the pathophysiology of kidney disease: Implications for noninvasive monitoring and identification of biomarkers. Med. Cell. Longev. 2020; 2020: 5478708. DOI: 10.1155/2020/5478708.
- Hallan SI, Rifkin DE, Potok OA, Katz R, Langlo KA, Bansal N, Ix JH. Implementing the European renal best practice guidelines suggests that prediction equations work well to differentiate risk of end-stage renal disease vs. death in older patients with low estimated glomerular filtration rate. Invest. 2019; 96 (3): 728–737. DOI: 10.1016/j.kint.2019.04.022.
- Ho HJ, Shirakawa H. Oxidative stress and mitochondrial dysfunction in chronic kidney disease. Cells. 2022; 12 (1): 88. DOI: 10.3390/cells12010088.
- Liubas N, Iskra R, Lubenets V. Antioxidant defense system of rat liver under the influence of thiosulfonate esters. Biol. 2023; 17 (2): 43–56. DOI: 10.30970/sbi.1702.709.
- Liubas N, Iskra R, Stadnytska N, Monka N, Havryliak V, Lubenets V. Antioxidant activity of thiosulfonate compounds in experiments in vitro and in vivo. Biointerface Res. Appl. Chem. 2022; 12 (3): 3106–3116. DOI: 10.33263/BRIAC123.31063116.
- Manna P, Jain SK. Obesity, oxidative stress, adipose tissue dysfunction, and the associated health risks: Causes and therapeutic strategies. Syndrome Rel. Disord. 2015; 13 (10): 423–444. DOI: 10.1089/met.2015.0095.
- Pal A, Mondal PP, Niloofar F, Sahoo B. Synthetic strategies for versatile thioester building blocks. J. Organ. Chem. 2022; 2022 (48): e202201159. DOI: 10.1002/ejoc.202201159.
- Pavlakou P, Liakopoulos V, Eleftheriadis T, Mitsis M, Dounousi E. Oxidative stress and acute kidney injury in critical illness: pathophysiologic mechanisms-biomarkers-interventions, and future perspectives. Med. Cell. Longev. 2017; 2017: 6193694. DOI: 10.1155/2017/6193694.
- Peng T, Zhuo L, Wang Y, Jun M, Li G, Wang L, Hong D. Systematic review of sodium thiosulfate in treating calciphylaxis in chronic kidney disease patients. Nephrology (Carlton). 2018; 23 (7): 669–675. DOI: 10.1111/nep.13081.
- Qiao J, Zheng K, Lin Z, Jin H, Yu W, Shen C, Jia A, Zhang Q. Heterogeneous Chitosan@copper catalyzed selective C(sp3)–H sulfonylation of ketone hydrazones with sodium sulfinates: Direct access to β-ketosulfones. Catalysts. 2023; 13 (4): 726. DOI: 10.3390/catal13040726.
- Ristow M, Schmeisser S. Extending life span by increasing oxidative stress. Free Rad. Biol. Med. 2011; 51 (2): 327–336. DOI: 10.1016/j.freeradbiomed.2011.05.010.
- Serra V, Castrica M, Agradi S, Curone G, Vigo D, Di Giancamillo A, Modina SC, Riva F, Balzaretti CM, De Bellis R, Brecchia G, Pastorelli Antioxidant activity of different tissues from rabbits fed dietary bovine colostrum supplementation. Animals. 2023; 13 (5): 850. DOI: 10.3390/ani13050850.
- Serra-Majem L, Román-Viñas B, Sanchez-Villegas A, Guasch-Ferré M, Corella D, La Vecchia C. Benefits of the Mediterranean diet: Epidemiological and molecular aspects. Aspect. Med. 2019; 67: 1–55. DOI: 10.1016/j.mam.2019.06.001.
- Shiwei Y, Zhaohua C, Qi C, Shuting L, Jinping H, Guanshen T, Zhaoyang W. Research progress in synthesis and application of thiosulfonates. J. Organ. Chem. 2022; 42 (8): 2322–2330. DOI: 10.6023/cjoc202203036.
- Stanisavljević N, Soković Bajić S, Jovanović Ž, Matić I, Tolinački M, Popović D, Popović N, Terzić-Vidojević A, Golić N, Beškoski V, Samardžić J. Antioxidant and antiproliferative activity of Allium ursinum and their associated microbiota during simulated in vitro digestion in the presence of food matrix. Microbiol. 2020; 11: 601616. DOI: 10.3389/fmicb.2020.601616.
- Sun M, Liu T, Li M, Tan J, Tian P, Wang H, Chen G, Jiang D, Liu X. A deep supercooling eutectic phase change material for low-temperature battery thermal management. Energy Stor. 2022; 50: 104240. DOI: 10.1016/j.est.2022.104240.
- Zhao Y, Zhang H, Hao D, Wang J, Zhang D, Sun Z, Liu C. Selenium alleviates chromium(VI)-induced ileum damage and cecal microbial disturbances in mice. Trace Elem. Res. 2022; 200: 4750–4761. DOI: 10.1007/s12011-021-03061-x.