Photoperiod-induced alterations in biomarkers of oxidative stress in rats of different ages and individual physiological reactivity
N. Kurhaluk1, H. Tkachenko1, T. Partyka2
This email address is being protected from spambots. You need JavaScript enabled to view it., This email address is being protected from spambots. You need JavaScript enabled to view it.
1Institute of Biology and Earth Sciences, Pomeranian University in Słupsk,
22b Arciszewskiego str., Słupsk,76-200, Poland
2Institute of Agriculture of the Carpathian Region NAAS,
5 Hrushevskoho str., Obroshyne, Lviv district, 81115, Ukraine
This study was undertaken to investigate the photoperiod- and age-related variability between the activity of oxidative stress biomarkers in rats with different physiological reactivity estimated by different resistance to hypoxia. The study was carried out on 96 male Wistar rats divided into 16 groups based on resistance to hypoxia (LR, low resistance, HR, high resistance) and age, i.e. 6 and 21 months. The studies were conducted at four photoperiod points: winter (January), spring (March), summer (July), and autumn (October). Lower levels of oxidative stress biomarkers (P<0.05) were observed in the younger rats when compared to older rats, as well as in HR rats compared to LR rats. The levels of lipid peroxidation end product, 2-thiobarbituric acid reactive substances (TBARS) as the major indicator of oxidative stress, were found to increase with age, and summer resulted in further elevation compared to other seasons. Also, oxidative stress biomarkers were lower (P<0.05) in winter than in other seasons, especially in the HR rats. TAC level in the hepatic tissue of the 6 months aged rats was significantly higher (P<0.05) elevated when compared to older rats. A similar higher TAC level was in the hepatic tissue of HR rats compared to the LR rats. The adult rats with HR maintained TAC with minimal fluctuations throughout the year. It should be noted that the difference in TAC was higher for the groups of the adult animals with HR in winter, spring, and summer, which may indicate effective mechanisms preventing the formation of reactive oxygen species and systems of elimination thereof.
Key words: rats, resistance to hypoxia, liver, seasons, lipid hydroperoxides, 2-thiobarbituric acid reactive substances (TBARS), total antioxidant capacity (TAC)
- Altamirano FG, Castro-Pascual IC, Ferramola ML, Tula ML, Delgado SM, Anzulovich AC, Lacoste MG. Aging disrupts the temporal organization of antioxidant defenses in the heart of male rats and phase shifts circadian rhythms of systolic blood pressure. 2021; 22 (6): 603–621. DOI: 10.1007/s10522-021-09938-7.
- Bartke A, Amador AG, Chandrashekar V, Klemcke HG. Seasonal differences in testicular receptors and steroidogenesis. Steroid Biochem. 1987; 27 (1–3): 581–587. DOI: 10.1016/0022-4731(87)90357-8.
- Bartman CM, Eckle T. Circadian-hypoxia link and its potential for treatment of cardiovascular disease. Pharm. Design. 2019; 25 (10), 1075–1090. DOI: 10.2174/1381612825666190516081612.
- Bartosz G. Total antioxidant capacity. Clin. Chem. 2003; 37: 219–292. DOI: 10.1016/S0065-2423(03)37010-6.
- Biondo-Simões MLP, Matias JEF, Montibeller GR, Siqueira LC, Nunes ES, Grassi CA. Effect of aging on liver regeneration in rats. Acta Cir. Bras. 2006; 21 (4): 197–202. DOI: 10.1590/S0102-86502006000400002.
- Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Biochem. 1976; 72 (1–2): 248–254. DOI: 10.1016/0003-2697(76)90527-3.
- Buege JA, Aust SD. Microsomal lipid peroxidation. Methods Enzymol. 1978; 52: 302–310. DOI: 10.1016/S0076-6879(78)52032-6.
- Buijs RM, Scheer FA, Kreier F, Yi C, Bos N, Goncharuk VD, Kalsbeek A. Organization of circadian functions: interaction with the body. Brain Res. 2006; 153: 341–360. DOI: 10.1016/S0079-6123(06)53020-1.
- Dzhalilova DS, Diatroptov ME, Tsvetkov IS, Makarova OV, Kuznetsov SL. Expression of Hif-1α, Nf-κb, and Vegf genes in the liver and blood serum levels of HIF-1α, erythropoietin, VEGF, TGF-β, 8-isoprostane, and corticosterone in Wistar rats with high and low resistance to hypoxia. Exp. Biol. Med. 2018; 165 (6): 781–785. DOI: 10.1007/s10517-018-4264-x.
- Dzhalilova D, Makarova O. Differences in tolerance to hypoxia: physiological, biochemical, and molecular-biological characteristics. 2020; 8 (10): 428. DOI: 10.3390/biomedicines8100428.
- Emens JS, Burgess HJ. Effect of light and melatonin and other melatonin receptor agonists on human circadian physiology. Sleep Med. Clin. 2015; 10 (4): 435–453. DOI: 10.1016/j.jsmc.2015.08.001.
- Fang YZ, Yang S, Wu G. Free radicals, antioxidants, and nutrition. 2002; 18 (10): 872–879. DOI: 10.1016/S0899-9007(02)00916-4.
- Ghani MA, Barril C, Bedgood DR Jr, Prenzler PD. Measurement of antioxidant activity with the thiobarbituric acid reactive substances assay. Food Chem. 2017; 230: 195–207. DOI: 10.1016/foodchem.2017.02.127.
- Grek OR, Pupyshev AB, Tikhonova EV. Effect of transitory ischemia on liver lysosomal apparatus in rats with different resistance to hypoxia. Exp. Biol. Med. 2003; 136 (1): 11–13. DOI: 10.1023/A:1026016224694.
- Halliwell B, Chirico S. Lipid peroxidation: its mechanism, measurement, and significance. J. Clin. Nutr. 1993; 57 (5): 715S–724S. DOI: 10.1093/ajcn/57.5.715S.
- Hardeland R, Coto-Montes A, Poeggeler B. Circadian rhythms, oxidative stress, and antioxidative defense mechanisms. Int. 2003; 20 (6): 921–962. DOI: 10.1081/CBI-120025245.
- Höller Y, Gudjónsdottir BE, Valgeirsdóttir SK, Heimisson GT. The effect of age and chronotype on seasonality, sleep problems, and mood. Psychiatry Res. 2021; 297: 113722. DOI: 10.1016/psychres.2021.113722.
- Jain K, Suryakumar G, Prasad R, Ganju L. Differential activation of myocardial ER stress response: a possible role in hypoxic tolerance. J. Cardiol. 2013; 168 (5): 4667–4677. DOI: 10.1016/j.ijcard.2013.07.180.
- Jeffrey Man HS, Tsui AK, Marsden PA. Nitric oxide and hypoxia signaling. Horm. 2014; 96: 161–192. DOI: 10.1016/B978-0-12-800254-4.00007-6.
- Kurhaluk N, Lukash O, Nosar V, Portnychenko A, Portnichenko V, Wszedybyl-Winklewska M, Winklewski PJ. Liver mitochondrial respiratory plasticity and oxygen uptake evoked by cobalt chloride in rats with low and high resistance to extreme hypobaric hypoxia. J. Physiol. Pharmacol. 2019; 97 (5): 392–399. DOI: 10.1139/cjpp-2018-0642.
- Kurhalyuk NM, Serebrovskaya TV, Kolesnikova EE. Role of cholino- and adrenoreceptors in regulation of rat antioxidant defense system and lipid peroxidation during adaptation to intermittent hypoxia. Ecol. Med. Genet. Cell Immunol. 2001; 7: 126–137. (in Ukrainian)
- Kurhalyuk N, Tkachenko H. L-arginine modulates mitochondrial function in rat liver during physical training. Vet. Inst. Puławy. 2007; 51 (4): 641–647. Available at: https://jvetres.piwet.pulawy.pl/files/archive/20074/20074641648.pdf
- Kurhaluk N, Tkachenko H. Melatonin and alcohol-related disorders. Int. 2020; 37 (6): 781–803. DOI: 10.1080/07420528.2020.1761372.
- Kurhaluk N, Tkachenko H, Lukash O. Melatonin modulates oxidative phosphorylation, hepatic and kidney autophagy-caused subclinical endotoxemia and acute ethanol-induced oxidative stress. Int. 2020; 37 (12): 1709–1724. DOI: 10.1080/07420528.2020.1830792.
- Kurhaluk N, Zaitseva OV, Sliuta A, Kyriienko S, Winklewski PJ. Melatonin diminishes oxidative stress in plasma, retains erythrocyte resistance and restores white blood cell count after low dose lipopolysaccharide exposure in mice. Physiol. Biophys. 2018; 37 (5): 571–580. DOI: 10.4149/gpb_2018010.
- Lacoste MG, Ponce IT, Golini RL, Delgado SM, Anzulovich AC. Aging modifies daily variation of antioxidant enzymes and oxidative status in the hippocampus. Gerontol. 2017; 88: 42–50. DOI: 10.1016/j.exger.2016.12.002.
- Lukyanova LD, Kirova YI. Effect of hypoxic preconditioning on free radical processes in tissues of rats with different resistance to hypoxia. Exp. Biol. Med. 2011; 151 (3): 292–296. DOI: 10.1007/s10517-011-1312-1.
- Lukyanova LD, Kirova YI. Mitochondria-controlled signaling mechanisms of brain protection in hypoxia. Neurosci. 2015; 9: 320. DOI: 10.3389/fnins.2015.00320.
- Lukyanova LD, Kirova YI, Germanova EL. The role of succinate in regulation of immediate HIF-1α expression in hypoxia. Exp. Biol. Med. 2018; 164 (3): 298–303. DOI: 10.1007/s10517-018-3976-2.
- Mármol F, Sánchez J, López D, Martínez N, Mitjavila MT, Puig-Parellada P. Oxidative stress, nitric oxide and prostaglandin E2 levels in the gastrointestinal tract of aging rats. Pharm. Pharmacol. 2009; 61 (2): 201–206. DOI: 10.1211/jpp/61.02.0009.
- Mármol F, Sánchez J, López D, Martínez N, Xaus C, Peralta C, Roselló-Catafau J, Mitjavila MT, Puig-Parellada P. Role of oxidative stress and adenosine nucleotides in the liver of aging rats. Res. 2010; 59 (4): 553–560. DOI: 10.33549/physiolres.931768.
- McClung CA. Circadian rhythms and mood regulation: insights from pre-clinical models. Neuropsychopharmacol. 2011; 21 (4): S683–S693. DOI: 10.1016/j.euroneuro.2011.07.008.
- Miyazawa T. Lipid hydroperoxides in nutrition, health, and diseases. Japan Acad. Ser. B Phys. Biol. Sci. 2021; 97 (4): 161–196. DOI: 10.2183/pjab.97.010.
- Mortola JP. Gender and the circadian pattern of body temperature in normoxia and hypoxia. Physiol. Neurobiol. 2017; 245: 4–12. DOI: 10.1016/j.resp.2016.11.002.
- Mortola JP. Hypoxia and circadian patterns. Physiol. Neurobiol. 2007; 158 (2–3): 274–279. DOI: 10.1016/j.resp.2007.02.005.
- Niki E. Lipid peroxidation products as oxidative stress biomarkers. Biofactors. 2008; 34 (2): 171–180. DOI: 10.1002/biof.5520340208.
- Padhy G, Sethy NK, Ganju L, Bhargava K. Abundance of plasma antioxidant proteins confers tolerance to acute hypobaric hypoxia exposure. High Alt. Med. Biol. 2013; 14 (3): 289–297. DOI: 10.1089/ham.2012.1095.
- Peek CB, Levine DC, Cedernaes J, Taguchi A, Kobayashi Y, Tsai SJ, Bonar NA, McNulty MR, Ramsey KM, Bass J. Circadian clock interaction with HIF1α mediates oxygenic metabolism and anaerobic glycolysis in skeletal muscle. Cell Metab. 2017; 25 (1): 86–92. DOI: 1016/j.cmet.2016.09.010.
- Prabhakar NR, Semenza GL. Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Rev. 2012; 92 (3): 967–1003. DOI: 10.1152/physrev.00030.2011.
- Pré J. Lipid peroxidation. Biol. 1991; 39 (7): 716–736. PMID: 1758725. (in French)
- Reiter RJ, Tan DX, Terron MP, Flores LJ, Czarnocki Z. Melatonin and its metabolites: new findings regarding their production and their radical scavenging actions. Acta Biochim. Pol. 2007; 54 (1): 1–9. DOI: 10.18388/abp.2007_3264.
- Rubio C, Lizárraga E, Álvarez-Cilleros D, Pérez-Pardo P, Sanmartín-Salinas P, Toledo-Lobo MV, Alvarez C, Escrivá F, Fernández-Lobato M, Guijarro LG, Valverde AM, Carrascosa JM. Aging in male Wistar rats associates with changes in intestinal microbiota, gut structure, and cholecystokinin-mediated gut-brain axis function. Gerontol. A Biol. Sci. Med. Sci. 2021; 76 (11): 1915–1921. DOI: 10.1093/gerona/glaa313.
- Serebrovskaya TV, Xi L. Individualized intermittent hypoxia training: principles and practices. In: Intermittent Hypoxia and Human Diseases. Ed. by L. Xi, T. Serebrovskaya. London, UK: Springer, 2012: 281–289. DOI: 10.1007/978-1-4471-2906-6_23.
- Strauss E, Waliszewski K, Oszkinis G, Staniszewski R. Polymorphisms of genes involved in the hypoxia signaling pathway and the development of abdominal aortic aneurysms or large-artery atherosclerosis. Vasc. Surg. 2015; 61 (5): 1105–1113. DOI: 10.1016/j.jvs.2014.02.007.
- Tiana L, Caib Q, Wei H. Alterations of antioxidant enzymes and oxidative damage to macromolecules in different organs of rats during aging. Free Radic. Biol. Med. 1998; 24 (9): 1477–1484. DOI: 10.1016/S0891-5849(98)00025-2.
- Tkachenko H, Kurhalyuk N, Khabrovska L, Kamiński P. Effect of L-arginine on lead induced oxidative stress in the blood of rats with different resistance to hypoxia. J. Food Nutr. Sci. 2007; 57 (3): 387–394. Available at: http://journal.pan.olsztyn.pl/EFFECT-OF-L-ARGININE-ON-LEAD-INDUCED-OXIDATIVE-STRESS-IN-THE-BLOOD-OF-RATS-WITH-DIFFERENT,98080,0,2.html
- Travaglio M, Ebling FJP. Role of hypothalamic tanycytes in nutrient sensing and energy balance. Nutr. Soc. 2019; 78 (3): 272–278. DOI: 10.1017/S0029665118002665.
- Ubuka T, Bentley GE. Neuroendocrine control of reproduction in birds. In: Norris DO, Lopez KH (eds.). Hormones and Reproduction of Vertebrates. London, Academic Press, 2011: 1–25. DOI: 10.1016/B978-0-12-374929-1.10001-0.
- Urbanski HF, Sorwell KG. Age-related changes in neuroendocrine rhythmic function in the rhesus macaque. 2012; 34 (5): 1111–1121. DOI: 10.1007/s11357-011-9352-z.
- Van der Klein SAS, Zuidhof MJ, Bédécarrats GY. Diurnal and seasonal dynamics affecting egg production in meat chickens: A review of mechanisms associated with reproductive dysregulation. Reprod. Sci. 2020; 213: 106257. DOI: 10.1016/j.anireprosci.2019.106257.
- Yan L, Lonstein JS, Nunez AA. Light as a modulator of emotion and cognition: Lessons learned from studying a diurnal rodent. Behav. 2019; 111: 78–86. DOI: 10.1016/j.yhbeh.2018.09.003.
- Zar JH. Biostatistical Analysis. 4th, New Jersey, Englewood Cliffs, Prentice-Hall Inc., 1999: 663 p. Available at: https://books.google.com.ua/books/about/Biostatistical_Analysis.html?id=edxqAAAAMAAJ&redir_esc=y
- Zhang HJ, Xu L, Drake VJ, Xie L, Oberley LW, Kregel KC. Heat-induced liver injury in old rats is associated with exaggerated oxidative stress and altered transcription factor activation. FASEB J. 2003; 17 (15): 2293–2295. DOI: 10.1096/fj.03-0139fje.