Bìol. Tvarin. 2022; 24 (3): 18–21.
Received 14.05.2022 ▪ Accepted 02.08.2022 ▪ Published online 01.10.2022

Research on fungicidal effect of “Diolide” disinfectant

O. M. Chechet1, V. L. Kovalenko2

This email address is being protected from spambots. You need JavaScript enabled to view it.

1State Scientific and Research Institute for Laboratory Diagnostics and Veterinary and Sanitary Expertise,
12 Volynska str., Kyiv, 03151, Ukraine

2State Research and Control Institute for Biotechnology and Microorganisms Strains,
30 Donetska str., 03151, Kyiv, Ukraine

Nowadays it is important to develop new disinfectants for poultry which are simple in use, non-toxic if used in the presence of birds, with a broad bactericidal spectrum, not causing the resistance of microflora, maintaining the air environment, linking ammonia and deodorizing the air. One of the product effectiveness indicators comes from testing on micromycetes which are persistent on the indoor surfaces and require high fungicidal concentrations of active substances. Research results of the effect produced by the “Diolide” disinfectant with 42% sodium chlorite and 46% sodium chloride base showed fungicidal activity against the etalon strains of Candida albicans ATCC 10231 and Aspergillus niger ATCC 16404. By serial digestion method using paper disks on Chapek’s medium and on the malt agar in the presence of the “Diolide” disinfectant the effective concentration of 0.1% was established. “Diolide” disinfectant at 0.1% concentration at 60 min. exposure completely disinfected test objects of wood, iron, brick and plaster which were contaminated with micromycetes. It was found that the effectiveness of “Diolide” disinfectant depends directly on the time of exposure and it is therefore necessary to adhere to these conditions in the production process.

Key words: micromycetes, disinfectant, test objects, test microorganisms, fungicidal effect

  1. Chemical disinfectants and antiseptics main fungicidal activity. Test method and requirements (stage 1). NSU EN 1275:2004. Available at: https://budstandart.ua/normativ-document.html?id_doc=53724 (in Ukrainian)
  2. Ge Y, Zhang X, Shu L, Yang X. Kinetics and mechanisms of virus inactivation by chlorine dioxide in water treatment: a review. Environ. Contam. Toxicol. 2021; 106 (4): 560–567. DOI: 10.1007/s00128-021-03137-3.
  3. Gilbert P, Moore LE. Cationic antiseptics: diversity of action under a common epithet. Appl. Microbiol. 2005; 99 (4): 703–715. DOI: 10.1111/j.1365-2672.2005.02664.x.
  4. Kovalenko VL, Garkavenko VM. Investigation of “Barez” bactericidal preparation efficiency by fungicidal action. Bull. Vet. Med. Bila Tserkva, 2017; 2 (136): 56–59. Available at: https://nvvm.btsau.edu.ua/uk/content/doslidzhennya-efektyvnosti-bakterycydnogo-zasobu-barez-za-vyznachennyam-fungicydnoyi-diyi (in Ukrainian)
  5. Kovalenko VL, Liasota VP, Synytsyn VA, Holovko AM, Kukhtyn MD. General methods of prophylaxis using complex disinfectants. A tutorial. Nizhyn: Lysenko MM, 2017: 408 p. ISBN 978-617-640-332-6. (in Ukrainian)
  6. Kovalenko VL, Vasianovych OM, Zahrebelnyi OV. Studies on the effect of “Orgasept” disinfectant on Aspergillus, Penicillium, Fusarium and Candida fungi species. Biotechnol. 2016; 29: 132–137. Available at: http://vetbiotech.kiev.ua/uk/arhiv/31-29/325-kovalenko-v-l (in Ukrainian)
  7. Kovalenko VL, Zasiekin DA (eds.). Disinfectant Development and Control. A monograph. Kyiv, 2013: 166 p. (in Ukrainian)
  8. Li X, Wu Z, Dang C, Zhang M, Zhao B, Cheng Z, Chen L, Zhong Z, Ye Y, Xia A metagenomic-based method to study hospital air dust resistome. Chem. Eng. J; 2021. 406: 126854. DOI: 10.1016/j.cej.2020.126854.
  9. Mokienko AV. Chlorine dioxide: application in water treatment technologies. A monograph. 2nd Odesa, Phoenix, 2021: 336 p. Available at: https://www.onmedu.edu.ua/xmlui/bitstream/handle/123456789/10872/Mokienko%20%282%29.pdf
  10. Ortiz S, López-Alonso V, Rodríguez P, Martínez-Suárez JV. The connection between persistent, disinfectant-resistant Listeria monocytogenes strains from two geographically separate Iberian pork processing plants: evidence from comparative genome analysis. Environ. Microbiol. 2015; 82 (1): 308–317. DOI: 10.1128/AEM.02824-15.
  11. Rabenau HF, Schwebke I, Blümel J, Eggers M, Glebe D, Rapp I, Sauerbrei A, Steinmann E, Steinmann J, Willkommen H, Wutzler P. Guideline for testing chemical disinfectants regarding their virucidal activity within the field of human medicine. Gesundheitsforschung. Gesundheitsschutz. 2020; 63 (5): 645–655. DOI: 10.1007/s00103-020-03115-w.
  12. Rodionova KO, Paliy AP. Analysis of quality and safety indicators of poultry meat during primary processing. Vet. Med. Biotechnol. Biosaf. 2017; 3 (2): 5–9. Available at: http://jvmbbs.kharkov.ua/archive/2017/volume3/issue2/article1.php
  13. Stonehouse GG, Evans JA. The use of supercooling for fresh foods: a review. Food Engineer. 2015; 148: 74–79. DOI: 10.1016/j.jfoodeng.2014.08.007.
  14. Synytsyn VA (ed.), Kovalenko VL, Zaviriukha AI, Nychyk SA, Nedosiekov VV. Problems of Infectious Animal Diseases. A monograph. Kyiv, Lysenko MM, 2015: 543 p. ISBN 978-617-640-237-4. (in Ukrainian)
  15. Tomasino SF. Development and assessment of disinfectant efficacy test methods for regulatory purposes. J. Infect. Contr. 2013; 41 (5): S72–S76. DOI: 10.1016/j.ajic.2012.11.007.
  16. Wang J, Tao D, Wang S, Li C, Li Y, Zheng F, Wu Z. Disinfection of lettuce using organic acids: an ecological analysis using 16S rRNA sequencing. RSC Adv. 2019; 30 (9): 17514–17520. DOI: 10.1039/C9RA03290H.
  17. Yefimova OM, Kasianchuk VV. Analysis of microbiological safety of national products of animal origin intended for export. Med. Ukr. 2014; 1: 30–34. (in Ukrainian)
  18. Zwirzitz B, Wetzels SU, Dixon ED, Stessl B, Zaiser A, Rabanser I, Thalguter S, Pinior B, Roch FF, Strachan C, Zanghellini J, Dzieciol M, Wagner M, Selberherr E. The sources and transmission routes of microbial populations throughout a meat processing facility. npj Biofilm. Microbiom. 2020; 6: 26. DOI: 10.1038/s41522-020-0136-z.

Search