Завантажити повний текст у PDF

Bìol. Tvarin. 2023; 25 (4): 44–50.
https://doi.org/10.15407/animbiol25.04.044
Received 14.10.2023 ▪ Revision 21.11.2023 ▪ Accepted 25.12.2023 ▪ Published online 29.12.2023


Вплив похідної 4-тіазолідинону та німесуліду на парієтальну кишкову мікробіоту щурів за індукованого запального процесу in vivo

Т. М. Руминська1,2, Г. С. Лаврик1

Ця електронна адреса захищена від спам-ботів. Вам необхідно увімкнути JavaScript, щоб побачити її.

1Львівський національний медичний університет імені Данила Галицького, вул. Пекарська, 69, м. Львів, 79010, Україна
2Інститут біології тварин НААН, вул. В. Стуса, 38, м. Львів, 79034, Україна


Нестероїдні протизапальні препарати, які широко застосовуються у лікуванні хвороб, що супроводжуються болем та гарячкою, здатні спричиняти захворювання шлунково-кишкового каналу і асоціюються з порушеннями кишкової мікробіоти. Пошук нових сполук, які б могли впливати на спільноту мікроорганізмів, проявляти протимікробну та протизапальну дію, є важливим завданням сучасної медицини та ветеринарії. Одними із перспективних молекул, які проявляють такі ефекти, є похідні 4-тіазолідинону. Метою дослідження було проаналізувати вплив новосинтезованої сполуки Les6490 та німесуліду на пристінкову мікробіоту кишки щурів in vivo за умов індукованого запального процесу ад’ювантом Фрейнда. Експериментальне дослідження проводили на щурах, яким інтрагастрально впродовж двох тижнів вводили досліджувані речовини. Матеріалом для дослідження слугував пристінковий слиз тонкої кишки, мікробіом якого вивчали за допомогою секвенування 16S рРНК. Метагеномний аналіз дав можливість проаналізувати види мікроорганізмів у дослідних групах з індукованим запаленням (групи A та AL) та без запалення (групи K, L, N). Встановлено, що склад мікробіому кишкового тракту щурів змінюється в умовах індукованого запалення та за дії сполуки Les6490 (групи A та L) якщо порівнювати з контрольною групою (група K). Вплив сполуки Les6490 на склад мікробіому кишкового каналу щурів подібний до німесуліду, але її дія є вираженішою. Сполука Les6490 сприяє збільшенню кількості бактерій роду Helicobacter та пригнічує ріст Stenotrophomonas у групі без індукованого запалення (група L), натомість у групі із запаленням (група АL) такого ефекту не спостерігали. Сама по собі сполука (не в моделях із запаленням) призводить до збільшення видової різноманітності мікробіому кишки щурів.

Ключові слова: мікробіом, запальний процес, похідна 4-тіазолідинону, секвенування 16S рРНК, мікробіота кишківника, щури


  1. Anachad O, Taouil A, Taha W, Bennis F, Chegdani F. The implication of short-chain fatty acids in obesity and diabetes. Insights. 2023; 16. DOI: 10.1177/11786361231162720.
  2. Ather AQ, Tahir MN, Khan MA, Mehmood K, Chaudhry F. 1,3-Diphenyl-1H-pyrazole-4-carbaldehyde. Acta Cryst. 2010; 66 (12): o3170. DOI: 10.1107/S1600536810045630.
  3. Bander ZA, Nitert MD, Mousa A, Naderpoor N. The gut microbiota and inflammation: An overview. IJERPH, 2020; 17 (20): 7618. DOI: 10.3390/ijerph17207618.
  4. Chen J, Wright K, Davis JM, Jeraldo P, Marietta EV, Murray J, Nelson H, Matteson EL, Taneja V. An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis. Genome Med. 2016; 8 (1): 43. DOI: 10.1186/s13073-016-0299-7.
  5. Dong Y, Yao J, Deng Q, Li X, He Y, Ren X, Zheng Y, Song R, Zhong X, Ma J, Shan D, Lv F, Wang X, Yuan R, She G. Relationship between gut microbiota and rheumatoid arthritis: A bibliometric analysis. Immunol. 2023; 14. DOI: 10.3389/fimmu.2023.1131933.
  6. Eissa MM, Mostafa DK, Ghazy AA, El azzouni MZ, Boulos LM, Younis LK. Anti-arthritic activity of Schistosoma mansoni and Trichinella spiralis derived-antigens in adjuvant arthritis in rats: Role of FOXP3+ Treg Cells. PLoS One. 2016; 11: e0165916. DOI: 10.1371/journal.pone.0165916.
  7. Engevik MA, Danhof HA, Ruan W, Engevik AC, Chang-Graham AL, Engevik KA, Shi Z, Zhao Y, Brand CK, Krystofiak ES, Venable S, Liu X, Hirschi KD, Hyser JM, Spinler JK, Britton RA, Versalovic J. Fusobacterium nucleatum secretes outer membrane vesicles and promotes intestinal inflammation. 2021; 12 (2): e02706-20. DOI: 10.1128/mBio.02706-20.
  8. Goodrich JK, Davenport ER, Clark AG, Ley RE. The relationship between the human genome and microbiome comes into view. Rev. Genet. 2017; 51: 413–433. DOI: 10.1146/annurev-genet-110711-155532.
  9. He J, Chu Y, Li J, Meng Q, Liu Y, Jin J, Wang Y, Wang J, Huang B, Shi L, Shi X, Tian J, Zhufeng Y, Feng R, Xiao W, Gan Y, Guo J, Shao C, Su Y, Hu F, Sun X, Yu J, Kang Y, Li Z. Intestinal butyrate-metabolizing species contribute to autoantibody production and bone erosion in rheumatoid arthritis. Adv. 2022; 8 (6): eabm1511. DOI: 10.1126/sciadv.abm1511.
  10. Ivasechko I, Yushyn I, Roszczenko P, Senkiv J, Finiuk N, Lesyk D, Holota S, Czarnomysy R, Klyuchivska O, Khyluk D, Kashchak N, Gzella A, Bielawski K, Bielawska A, Stoika R, Lesyk R. Development of novel pyridine-thiazole hybrid molecules as potential anticancer agents. Molecules. 2022; 27 (19): 6219. DOI: 10.3390/molecules27196219.
  11. Jangi S, Gandhi R, Cox LM, Li N, von Glehn F, Yan R, Patel B, Mazzola MA, Liu S, Glanz BL, Cook S, Tankou S, Stuart F, Melo K, Nejad P, Smith K, Topçuolu BD, Holden J, Kivisäkk P, Chitnis T, De Jager PL, Quintana FJ, Gerber GK, Bry L, Weiner HL. Alterations of the human gut microbiome in multiple sclerosis. Commun. 2016; 7: 12015. DOI: 10.1038/ncomms12015.
  12. Kamel KM, Gad AM, Mansour SM, Safar MM, Fawzy HM. Venlafaxine alleviates complete Freund’s adjuvant-induced arthritis in rats: Modulation of STAT-3/IL-17/RANKL axis. Life Sci. 2019; 226: 68–76. DOI: 10.1016/j.lfs.2019.03.063.
  13. Konechnyi Y, Lozynskyi A, Ivasechko I, Dumych T, Paryzhak S, Hrushka O, Partyka U, Pasichnyuk I, Khylyuk D, Lesyk R. 3-[5-(1H-Indol-3-ylmethylene)-4-oxo-2-thioxothiazolidin-3-yl]-propionic acid as a potential polypharmacological agent. Pharm. 2023; 91 (1): 13. DOI: 10.3390/scipharm91010013.
  14. Li G, Lin J, Zhang C, Gao H, Lu H, Gao X, Zhu R, Li Z, Li M, Liu Z. Microbiota metabolite butyrate constrains neutrophil functions and ameliorates mucosal inflammation in inflammatory bowel disease. Gut Microb. 2021; 13 (1): 1968257. DOI: 10.1080/19490976.2021.1968257.
  15. López P, de Paz B, Rodríguez-Carrio J, Hevia A, Sánchez B, Margolles A, Suárez A. Th17 responses and natural IgM antibodies are related to gut microbiota composition in systemic lupus erythematosus patients. Rep. 2016; 6: 24072. DOI: 10.1038/srep24072.
  16. Louis P, Hold GL, Flint HJ. The gut microbiota, bacterial metabolites and colorectal cancer. Rev. Microbiol. 2014; 12: 661–672. DOI: 10.1038/nrmicro3344.
  17. Lynch SV, Pedersen O. The human intestinal microbiome in health and disease. New Engl. J. Med. 2016; 375 (24): 2369–2379. DOI: 10.1056/NEJMra1600266.
  18. Mitrea L, Nemeş SA, Szabo K, Teleky BE, Vodnar DC. Guts imbalance imbalances the brain: A review of gut microbiota association with neurological and psychiatric disorders. Med. 2022; 9: 813204. DOI: 10.3389/fmed.2022.813204.
  19. Morrison KE, Jašarević E, Howard CD, Bale TL. It’s the fiber, not the fat: significant effects of dietary challenge on the gut microbiome. Microbiome. 2020; 8 (1): 15. DOI: 10.1186/s40168-020-0791-6.
  20. NIMESULIDE: instruction, use of NIMESULIDE 100 mg. Normative and directive documents of the Ministry of Health of Ukraine. Available at: https://mozdocs.kiev.ua/likiview.php?id=228
  21. Nishida Y, Adachi K, Kasai H, Shizuri Y, Shindo K, Sawabe A, Komemushi S, Miki W, Misawa N. Elucidation of a carotenoid biosynthesis gene cluster encoding a novel enzyme, 2,2'-beta-hydroxylase, from Brevundimonas strain SD212 and combinatorial biosynthesis of new or rare xanthophylls. Appl. Environ. Microbiol. 2005; 71 (8): 4286–4296. DOI: 10.1128/AEM.71.8.4286-4296.2005.
  22. Parker BJ, Wearsch PA, Veloo ACM, Rodriguez-Palacios A. The genus alistipes: Gut bacteria with emerging implications to inflammation, cancer, and mental health. Immunol. 2020; 11: 906. DOI: 10.3389/fimmu.2020.00906.
  23. Patil KR, Mahajan UB, Unger BS, Goyal SN, Belemkar S., Surana SJ, Ojha S, Patil CR. Animal models of inflammation for screening of anti-inflammatory drugs: Implications for the discovery and development of phytopharmaceuticals. 2019; 20 (18): 4367. DOI: 10.3390/ijms20184367.
  24. Patil KR, Patil CR. Anti-inflammatory activity of bartogenic acid containing fraction of fruits of Barringtonia racemosa in acute and chronic animal models of inflammation. J. Tradit. Complement. Med. 2016; 7 (1): 86–93. DOI: 10.1016/j.jtcme.2016.02.001.
  25. Ram M, Barzilai O, Shapira Y, Anaya JM, Tincani A, Stojanovich L, Bombardieri S, Bizzaro N, Kivity S, Agmon Levin N, Shoenfeld Y. Helicobacter pylori serology in autoimmune diseases — fact or fiction? Chem. Lab. Med. 2013; 51 (5): 1075–1082. DOI: 10.1515/cclm-2012-0477.
  26. Round JL, Lee SM, Li J, Tran G, Jabri B, Chatila TA, Mazmanian SK. The toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science. 2011; 332 (6032): 974–977. DOI: 10.1126/science.1206095.
  27. Said MS, Tirthani E, Lesho E. Stenotrophomonas Maltophilia. In: StatPearls. Treasure Island, StatPearls Publ., 2024. Available at: https://www.ncbi.nlm.nih.gov/books/NBK572123
  28. Salvi PS, Cowles RA. Butyrate and the intestinal epithelium: Modulation of proliferation and inflammation in homeostasis and disease. Cells. 2021; 10 (7): 1775. DOI: 10.3390/cells10071775.
  29. Sonnenberg A. Protective role of Helicobacter pylori against inflammatory bowel disease: a hypothesis. Gastroenterol. 2009; 33: 23–33. Available at: https://www.ficomputing.net/pdf/September09/SonnenbergArticle.pdf
  30. Sonnenberg A. Review article: historic changes of Helicobacter pylori-associated diseases. Aliment Pharmacol. Ther. 2013; 38 (4): 329–342. DOI: 10.1111/apt.12380.
  31. Telesford KM, Yan W, Ochoa-Reparaz J, Pant A, Kircher C, Christy MA, Begum-Haque S, Kasper DL, Kasper LH. A commensal symbiotic factor derived from bacteroides fragilis promotes human CD39+Foxp3+ T cells and treg Gut Microb. 2015; 6 (4): 234–242. DOI: 10.1080/19490976.2015.1056973.
  32. Turkevych NM, Vvedenskij VM, Petlichnaya LP. Method of obtaining pseudothiohydantoin and thiazolidinedione-2,4. Khim. Zh. 1961; 27: 680–681. Reprinted in: Chem. Abstr. 1962; 56: 73455.
  33. Wang X, Tang Q, Hou H, Zhang W, Li M, Chen D, Gu Y, Wang B, Hou J, Liu Y, Cao H. Gut microbiota in NSAID enteropathy: New insights from inside. Cell. Infect. Microbiol. 2021; 11: 679396. DOI: 10.3389/fcimb.2021.679396.
  34. Wehkamp J, Fellermann K, Herrlinger KR, Bevins CL, Stange EF. Mechanisms of disease: defensins in gastrointestinal diseases. Clin. Pract. Gastroenterol. Hepatol. 2005; 2: 406–415. DOI: 10.1038/ncpgasthep0265.
  35. Yang H, Cai R, Kong Z, Chen Y, Cheng C, Qi S, Gu B. Teasaponin ameliorates murine colitis by regulating gut microbiota and suppressing the immune system response. Med. 2020; 7: 584369. DOI: 10.3389/fmed.2020.584369.
  36. Yin Z, Liu X, Qian C, Sun L, Pang S, Liu J, Li W, Huang W, Cui S, Zhang C, Song W, Wang D, Xie Z. Pan-genome analysis of Delftia tsuruhatensis reveals important traits concerning the genetic diversity, pathogenicity, and biotechnological properties of the species. Spectr. 2022; 10 (2): e0207221. DOI: 10.1128/spectrum.02072-21.
  37. Yushyn I, Holota S, Ivantsiv O, Lesyk R. rel-2-[4-Chloro-2-[(5R,6R,7S)-6-[5-(4-methoxyphenyl)-3-(2-naphthyl)-3,4-dihydropyrazole-2-carbonyl]-5-methyl-2-oxo-3,5,6,7-tetrahydrothiopyrano[2,3-d]thiazol-7-yl]phenoxy]acetic acid. Molbank. 2022; 2022: M1410. DOI: 10.3390/M1410.
  38. Zhao T, Wei Y, Zhu Y, Xie Z, Hai Q, Li Z, Qin, D. Gut microbiota and rheumatoid arthritis: From pathogenesis to novel therapeutic opportunities. Immunol. 2022; 13: 1007165. DOI: 10.3389/fimmu.2022.1007165.

Search