Bìol. Tvarin. 2021; 23 (4): 59–65.
Received 07.12.2021 ▪ Accepted 23.12.2021 ▪ Published online 29.12.2021

Стан системи антиоксидантного захисту у риб Danio rerio за інтоксикації хлорпірифосом

В. В. Довганюк, В. П. Росаловський, Ю. Т. Салига

Ця електронна адреса захищена від спам-ботів. Вам необхідно увімкнути JavaScript, щоб побачити її.

Інститут біології тварин НААН,
вул. В. Стуса, 38, м. Львів, 79034, Україна

Представлені результати досліджень впливу гострої інтоксикації хлорпірифосом (ХПФ) риб Danio rerio у концентраціях 0,5 мг/л; 0,75 мг/л та 1 мг/л акваріумної води впродовж 24 год. на вміст ТБК-активних продуктів активність каталази (КАТ), супероксиддисмутази (СОД), глутатіонпероксидази (ГПО), глутатіонредуктази (ГР) у їхніх тканинах. Через 24 год. перебування риб у воді із внесеним ХПФ у концентраціях 0,75 мг/л та 1 мг/л у досліджуваних тканинах виявили зростання вмісту ТБК-активних продуктів порівняно до контрольних значень. Встановлено лінійний характер зростання ензиматичної активності КАТ у тканинах голови і тулуба риб унаслідок впливу ХПФ у дозах 0,5 мг/л; 0,75 мг/л та 1 мг/л. На тлі зростання каталазної активності у Danio rerio через 24 год. після дії токсиканта виявлено обернено пропорційну залежність між дозою ХПФ та активністю ГПО обидвох досліджуваних відділів тіла риб. У тканинах голови і тулуба встановлено інгібування активності СОД за дії ХПФ. Активність цього ензиму була найнижчою за дії ХПФ у концентрації 0,75 мг/л. Отримані результати доповнюють дані стосовно токсичної дії ХПФ на іхтіофауну і зокрема на перебіг ХПФ-індукованого оксидативного стресу у риб Danio rerio. Отримані дані можуть бути використані в обґрунтуванні розроблення додаткових біохімічних маркерів інтоксикацій тварин ХПФ та іншими фосфорорганічними сполуками (ФОС) під час проведення токсикологічних та екологічних експериментів, враховуючи, що інтенсивність застосування інсектицидних препаратів у сільськогосподарському виробництві та побуті зростає.

Ключові слова: Danio rerio, хлорпірифос, інтоксикація, антиоксидантна система, оксидативний стрес, ензими, холінестераза

  1. Babaei F, Ramalingam R, Tavendale A, Liang Y, Yan LSK, Ajuh P, Cheng SH, Lam YW. Novel blood collection method allows plasma proteome analysis from single zebrafish. Proteome Res. 2013; 12 (4): 1580–1590. DOI: 10.1021/pr3009226.
  2. Carlberg I, Mannervik B. Purification and characterization of the flavoenzyme glutathione reductase from rat liver. Biol. Chem. 1975; 250 (14): 5475–5480. DOI: 10.1016/S0021-9258(19)41206-4.
  3. Deb N, Das S. Chlorpyrifos toxicity in fish: a review. World Environ. 2013; 8 (1): 77–84. DOI: DOI: 10.12944/CWE.8.1.17.
  4. Dimitrova MT, Tishinova V, Velcheva V. Combined effect of zinc and lead on the hepatic superoxide dismutase-catalase system in carp (Cyprinus carpio). Biochem. Physiol. C. Pharmacol. Toxicol. Endocrinol. 1994; 108 (1): 43–46. DOI: 10.1016/1367-8280(94)90087-6.
  5. Dubinina EE. Biological role of superoxide anion radical and SOD in body tissues. Successes Modern Biol. 1989; 108 (1): 71–81. (in Russian)
  6. Fırat Ö, Tutus R. Comparative acute toxicity assessment of organophosphate and avermectin insecticides on a freshwater fish Oreochromis niloticus. Environ. Contam. Toxicol. 2020; 105 (4): 582–587. DOI: 10.1007/s00128-020-02990-y.
  7. Hollert H, Keiter SH. Danio rerio as a model in aquatic toxicology and sediment research. Sci. Pollut. Res. 2015; 22: 16243–16246. DOI: 10.1007/s11356-015-5362-1.
  8. Huang X., Cui H, Duan W. Ecotoxicity of chlorpyrifos to aquatic organisms: a review. Environ. Saf. 2020; 200: 110731. DOI: 10.1016/j.ecoenv.2020.110731.
  9. Karadag HO, Fırat Ö, Fırat Ö. Use of oxidative stress biomarkers in Cyprinus carpio for the evaluation of water pollution in Ataturk Dam lake. Bull. Environ. Contam. Toxicol. 2014; 92: 289–293. DOI: 10.1007/s00128-013-1187-0.
  10. Khalil AM. Toxicological effects and oxidative stress responses in freshwater snail, Lanistes carinatus, following exposure to chlorpyrifos. Environ. Saf. 2015; 116: 137–142. DOI: 10.1016/j.ecoenv.2015.03.010.
  11. Khan FR, Alhewairini SS. Zebrafish (Danio rerio) as a model organism. In: Current Trends in Cancer Management. Ed. by L Streba, DI Gheonea, M Schenker. 2019: 3–18. ISBN 978-1-83880-006-2.
  12. Korolyuk MA, Ivanova LI, Mayorova IG, Tokarev VE. Method for determining catalase activity. Work, 1988; 1: 16–19. (in Russian)
  13. Kurdil NV, Zozulya IS, Ivashchenko OV. Features of acute organophosphate pesticides poisonings in urban area: recommendations for prehospital care. Family Medicine. 2014; 4 (54): 54– (in Russian)
  14. Liu P, Wu CH, Chang XL, Qi XJ, Zheng ML, Zhou ZJ. Assessment of chlorpyrifos exposure and absorbed daily doses among infants living in an agricultural area of the Province of Jiangsu, China. Arch. Occup. Environ. Health. 2014; 87 (7): 753–762. DOI: 10.1007/s00420-013-0918-1.
  15. López-López E, Sedeño-Díaz JE, Soto C, Favari L. Responses of antioxidant enzymes, lipid peroxidation, and Na+/K+-ATPase in liver of the fish Goodea atripinnis exposed to Lake Yuriria water. Fish Physiol. Biochem. 2011; 37: 511–522. DOI: 10.1007/s10695-010-9453-0.
  16. Ma J, Liu Y, Niu D, Li X. Effects of chlorpyrifos on the transcription of CYP3A cDNA, activity of acetylcholinesterase, and oxidative stress response of goldfish (Carassius auratus). Toxicol. 2014; 30 (4): 422–429. DOI: 10.1002/tox.21918.
  17. Majumder R, Kaviraj A. Acute and sublethal effects of organophosphate insecticide chlorpyrifos on freshwater fish Oreochromis niloticus. Drug Chem. Toxicol. 2019; 42 (5): 487–495. DOI: 10.1080/01480545.2018.1425425.
  18. Moin VM. A simple and specific method for determining the activity of glutathione peroxidase in erythrocytes. Work. 1984; 12: 724–727. (in Russian)
  19. Nunes MEM, Müller TE, Murussi C, do Amaral AMB, Gomes JLC, Marins AT, Leitemperger J, Rodrigues CCR, Fiuza TL, Costa MD, Severo ES, Rosemberg DB, Loro VL. Oxidative effects of the acute exposure to a pesticide mixture of cypermethrin and chlorpyrifos on carp and zebrafish — A comparative study. Biochem. Physiol. C. Toxicol. Pharmacol. 2018; 206–207: 48–53. DOI: 10.1016/j.cbpc.2018.03.002.
  20. Rao JV, Rani CHS, Kavitha P, Rao RN, Madhavendra SS. Toxicity of chlorpyrifos to the fish Oreochromis mossambicus. Contam. Toxicol. 2003; 70: 985–992. DOI: 10.1007/s00128-003-0079-0.
  21. Rosalovsky VP, Grabovska SV, Salyha YT. Biochemical and haematological changes in peripheral blood of rats exposed to chlorpyrifos: protective effect of vitamins A and E combination. Studia Biologica. 2015; 9 (3): 57–68. DOI: 10.30970/sbi.0903.448.
  22. Rosalovsky VP, Grabovska SV, Salyha YT. Changes in glutathione system and lipid peroxidation in rat blood during the first hour after chlorpyrifos exposure. Biochem. J. 2015; 87 (5): 124–132. DOI: 10.15407/ubj87.05.124.
  23. Salyha Y. Biological effects assessment of chlorpyrifos and some aspects of its neurotoxicity. Visnyk Lviv Univer. Ser. 2010; 54: 3–14. Available at: http://publications.lnu.edu.ua/bulletins/index.php/biology/article/view/8913
  24. Salyha YT. Chlorpyrifos leads to oxidative stress-induced death of hippocampal cells in vitro. Neurophysiol. 2013; 45 (3): 193–199. DOI: 10.1007/s11062-013-9356-7.
  25. Salyha Y, Rosalovsky V. Effects of chlorpyrifos intoxication on biochemical and erythrocytic parameters of rats blood. Visnyk of the Lviv University. Series Biology 2016; 71: 56–64. Available at: http://publications.lnu.edu.ua/bulletins/index.php/biology/article/view/4148
  26. Sandah JF, Baldwin DH, Jenkins JJ, Scholz NL. Comparative thresholds for acetylcholinesterase inhibition and behavioral impairment in coho salmon exposed to chlorpyrifos. Toxicol. Chem. 2005; 24 (1): 136–145. DOI: 10.1897/04-195R.1.
  27. Slotkin TA. Developmental cholinotoxicants: nicotine and chlorpyrifos. Health Perspect. 1999; 1: 71–80. DOI: 10.1289/ehp.99107s171.
  28. State Standard of Ukraine 4074-2001. Water quality — Determination of the acute lethal toxicity of substances to a freshwater fish [Brachydanio rerio Hamilton-Buchanan (Teleostei, Cyrinidae)] static method (ISO 7346-1:1996, MOD). (in Ukrainian)
  29. Sunanda M, Rao JCS, Neelima P, Simhachalam G. Toxicity and effects of chlorpyrifos in a non-target organism (Fish) — A review. Atoms Mol. 2016; 6 (3): 966–976.
  30. Svitlyi SS, Voronina VM, Rudaya LO, Kornuta NO, Bagley EA. More on chlorpyrifos-based preparations in human living environment. J. Modern Probl. Toxicol. 2019; 1 (85): 26-41. DOI: 10.33273/2663-4570-2019-85-1-26-40. (in Ukrainian)
  31. Ural MŞ, Yonar ME, Yonar SM. Protective effect of ellagic acid on oxidative stress and antioxidant status in Cyprinus carpio during malathion exposure. Cell Mol. Biol. 2015; 61 (5): 58–63. PMID: 26516111.
  32. Zhang Z, Liu Q, Cai J, Yang J, Shen Q, Xu S. Chlorpyrifos exposure in common carp (Cyprinus carpio) leads to oxidative stress and immune responses. Fish Shellfish Immunol. 2017; 67: 604–611. DOI: 10.1016/j.fsi.2017.06.048.

Search