Bìol. Tvarin. 2022; 24 (1): 50–60.
Received 14.03.2022 ▪ Accepted 29.03.2022 ▪ Published online 01.04.2022

Сполуки Германію та їхня роль в організмі тварин

Р. С. Федорук1, І. І. Ковальчук2, Л. М. Мезенцева3, У. І. Тесарівська4, А. З. Пилипець1, В. Г. Каплуненко5

Ця електронна адреса захищена від спам-ботів. Вам необхідно увімкнути JavaScript, щоб побачити її.

1Інститут біології тварин НААН,
вул. В. Стуса, 38, м. Львів, 79034, Україна

2Львівський національний університет ветеринарної медицини та біотехнологій імені С. З. Ґжицького,
вул. Пекарська 50, м. Львів, 79010, Україна

3Національна Академія Аграрних Наук України,
вул. Михайла Омеляновича-Павленка, 9, м. Київ, 01010, Україна

4Державний науково-дослідний контрольний інститут ветеринарних препаратів і кормових добавок,
вул. Донецька, 11, м. Львів, 79019, Україна

5ТзОВ «Наноматеріали і нанотехнології»,
вул. Васильківська, 27, м. Київ, 03022, Україна

Проведено аналіз даних літератури та окремих результатів досліджень її авторів за останні роки щодо біологічної дії сполук Германію у лабораторних і продуктивних тварин. У статті відзначено порівняльний вплив мінеральних і органічних сполук Германію хімічного та біотехнологічного синтезу, а також нанотехнологічного цитрату германію на функціонування імунної, гематологічної, антиоксидантної, детоксикаційної, репродуктивної та нервової систем організму тварин. Показано відмінності дії сполук Германію в організмі тварин залежно від його форми, способу, дози та експозиції застосування, методів одержання. На основі порівняння результатів власних досліджень, а також праць інших авторів, висвітлено переваги використання органічних сполук Германію хімічного, біотехнологічного і нанотехнологічного синтезу. Проведено аналіз функціонування окремих органів, систем та організму тварин за короткочасної і тривалої дії різних сполук Германію. За доступними для вивчення літературними джерелами приведено результати досліджень токсичності різних сполук Германію, їх впливу на рівень продуктивності тварин та якість продукції. Обґрунтовано співставлення впливу деяких препаратів, біологічно активних добавок і лікарських засобів, які містять сполуки Германію, на організм тварин. Зроблено висновки про переваги біологічної дії органічних сполук Германію, виготовлених методом біотехнологічного синтезу з використанням дріжджів Saccharomyces cerevisiae, а також Германію цитрату нанотехнологічного, одержаного на основі нанотехнології, щодо перспективи їх використання у тваринництві та ветеринарній медицині.

Ключові слова: германійорганічні сполуки, тварини, біологічні процеси, токсичність, фізіологічні системи, функції, відтворення

  1. Ali A, Ijaz M, Khan YR, Sajid HA, Hussain K, Rabbani AH, Shahid M, Naseer O, Ghaffar A, Naeem MA, Zafar MZ, Malik AI, Ahmed I. Role of nanotechnology in animal production and veterinary medicine. Anim. Health Prod. 2021; 53 (5): 508. DOI: 10.1007/s11250-021-02951-5.
  2. Arango Duque G, Descoteaux A. Macrophage cytokines: involvement in immunity and infectious diseases. Immunol. 2014; 5: 491. DOI: 10.3389/fimmu.2014.00491.
  3. Arts JHE, Til HP, Kuper CF, de Neve R, Swennen B. Acute and subacute inhalation toxicity of germanium dioxide in rats. Food Chem. Toxicol. 1994; 32 (11): 1037–1046. DOI: 10.1016/0278-6915(94)90144-9.
  4. Avdosyeva IK, Pashchenko AG, Kushnir VI. Advanced nanotechnologies — an alternative to antibiotics. Modern poultry. 2016; 4: 13–15. Available at: http://journals.nubip.edu.ua/index.php/Ptakhivnytstvo/article/view/10217 (in Ukrainian)
  5. Azumi J, Takeda T, Shimada Y, Aso H, Nakamura The organogermanium compound THGP suppresses melanin synthesis via complex formation with L-DOPA on mushroom tyrosinase and in B16 4A5 melanoma cells. Int. J. Mol. Sci. 2019; 20 (19): 4785. DOI: 10.3390/ijms20194785.
  6. Badawi AM, Hafiz AA. Synthesis and immunomodulatory activity of some novel amino acid germinates. Iran. Chem. Soc. 2007; 4 (1): 107–113. DOI: 10.1007/BF03245808.
  7. Borisevich VB, Kaplunenko VG, Kosinov MV. Nanomaterials in Biology. Fundamentals of nano-veterinary medicine. Kyiv, Avicenna, 2010: 416 p. (in Ukrainian)
  8. Bruggeman CW, Dekkers G, Bentlage AEH, Treffers LW, Nagelkerke SQ, Lissenberg-Thunnissen S, Koeleman CAM, Wuhrer M, van den Berg TK, Rispens T, Vidarsson G, Kuijpers TW. Enhanced effector functions due to antibody defucosylation depend on the effector cell Fcγ receptor profile. Immunol. 2017; 199 (1): 204–211. DOI: 10.4049/jimmunol.1700116.
  9. Bukhtiarova TA, Lukianchuk VD, Seifullina IY, Kravets DS, Martsinko OE, Litvinenko DF, Kozyr VA. Comparative toxicometry of heterometal complexes of Germanium (IV) and 3D-metals based on citric and tartaric acid. Sci. Res. 2018; 4: 127–132. DOI: 10.11603/2415-8798.2017.4.8165. (in Ukrainian)
  10. Busol VA, Sytnik MG. Еffect from nano-aqua chelates Germanium and Iron on hematological and blood biochemical parameters of broiler chickens. Works South. Branch NULES Ukr. Crimean Agrotechnol. Univer. Ser. Vet. Sci. 2013; 151: 160–164. Available at: http://nbuv.gov.ua/UJRN/Npkau_2013_151_28. (in Ukrainian)
  11. Cho JM, Chae J, Jeong SR, Moon MJ, Shin DY, Lee JH. Immune activation of Bio-Germanium in a randomized, double-blind, placebo-controlled clinical trial with 130 human subjects: Therapeutic opportunities from new insights. PLoS ONE. 2020; 15 (10): e0240358. DOI: 10.1371/journal.pone.0240358.
  12. Dobrzyński D, Boguszewska-Czubara A, Sugimori K. Hydrogeochemical and biomedical insights into germanium potential of curative waters: a case study of health resorts in the Sudetes Mountains (Poland). Geochem. Health. 2018; 40 (4): 1355–1375. DOI: 10.1007/s10653-017-0061-0.
  13. Dolaychuk OP, Fedoruk RS, Kovalchuk II, Kropyvka SY. Physiological and biochemical processes in the organisms of rats that were fed with different amounts of germanium citrate. Bìol. Tvarin. 2015; 17 (2): 50–56. DOI: 10.15407/animbiol17.02.050.
  14. Fedoruk RS, Khrabko MI, Tsap MM, Martsynko OE. Growth, development and reproductive function of female rats and their offspring viability at the conditions of the watering of different doses of citrate germanium. Bìol. Tvarin. 2016; 18 (3): 97–106. DOI: 10.15407/animbiol18.03.097. (in Ukrainian)
  15. Fedoruk RS, Tesarivska UI, Khrabko MI, Tsap MM. Growth and development of the organism and immunophysiological indices of blood of male F2 rats, affected by different doses of nanogermanium citrate. Sci. Pract. 2017; 4 (2): 14–22. DOI: 10.15407/agrisp4.02.014.
  16. Fedoruk RS, Tesarivska UI, Khrabko MI, Tsap MM, Dolaychuk OP, Kropyvka SI. Haematological and biochemical parameters of the F2 rats’ organism in a period of prolonged watering of nano-Ge citrate. Bìol. Tvarin. 2017; 19 (3): 115–121. DOI: 10.15407/03.115. (in Ukrainian)
  17. Grushka NG, Pavlovych SI, Kondratska OA, Pilkevcih NO, Yanchii RI. The protective effect of germanium citrate on functional state of immune cells and neutrophil activity under the condition of lipolysaccharide induced inflammation. Zh. 2019; 65 (6): 43–50. DOI: 10.15407/fz65.06.043. (in Ukrainian)
  18. Gulich MP, Yemchenko NL, Kharchenko OO, Yashchenko OV, Tomashevska LA, Antomonov MI. Nanotechnology Products: Citrates of Bioelements (Chemical Characteristics, Biological Action, Scope). Kyiv, Medinform, 2018: 202 p. (in Ukrainian)
  19. Gunchak OV, Kaplunenko VH. Productive qualities of goslings for meat when used in animal feed additives germanium. Husb. Prod. Product. Process. 2013; 9: 51–54. Available at: http://rep.btsau.edu.ua/handle/BNAU/899 (in Ukrainian)
  20. Joo SS, Won TJ, Lee YJ, Kim MJ, Park SY, Lee SH, Hwang KW, Lee DI. Effect of geranti Bio-Ge yeast, a dried yeast containing biogermanium, on the production of antibodies by B-cells. Immune Netw. 2006; 6 (2): 86–92. DOI: 10.4110/in.2006.6.2.86. (in Corean)
  21. Jung M, Shin MK, Cha SB, Shin SW, Yoo A, Lee WJ, Park HT, Park JH, Kim B, Jung YK, Yoo HS. Supplementation of dietary germanium biotite enhances induction of the immune responses by foot-and-mouth disease vaccine in cattle. BMC Vet. Res. 2014; 10: 179. DOI: 10.1186/s12917-014-0179-6.
  22. Kareem EH, Dawood TN, Al-Samarai FR. Application of nanoparticle in the veterinary medicine. Magna Scientia Adv. Res. Rev. 2022; 4 (1): 27–38. DOI: 10.30574/msarr.2022.4.1.0082.
  23. Keith LS, Faroon OM, Maples-Reynolds N, Fowler BA. Chapter 37 — Germanium. In: Handbook on the Toxicology of Metals. 4th Acad. Press. 2015; 799–816. DOI: 10.1016/B978-0-444-59453-2.00037-8.
  24. Khrabko MI, Fedoruk RS, Khrabko MI, Martsinko EE, Denys Microelements content in tissues of female F0 rats and F1 males at the watering of nano and chemically synthesized germanium citrate. Bìol. Tvarin. 2017; 19 (1): 125–134. DOI: 10.15407/animbiol19.01.125. (in Ukrainian)
  25. Khrabko M, Fedoruk R, Kropyvka S, Tesarivska U. The regulatory effect of different doses of germanium citrate on physiological and biochemical processes in the body male F2. Taras Shevchenko Nat. Univer. Kyiv. Ser. Biol. 2017; 1 (73): 66–69. DOI: 10.17721/1728_2748.2017.73.66-69.
  26. Kikish IB, Kovalchuk II, Lesyk YV, Kovalska LM. Mineral composition and qualitative indicators of beekeeping products by bee feeding with citrates Co and Ge. Tech. Bull. State Sci. Res. Cont. Inst. Vet. Med. Prod. Fodder Add. Inst. Anim. Biol. 2021; 22 (2): 149–156. DOI: 10.36359/scivp.2021-22-2.18.
  27. Kim E, Hwang SU, Yoon JD, Jeung EB, Lee E, Kim DY, Hyun SH. Carboxyethylgermanium sesquioxide (Ge-132) treatment during in vitro culture protects fertilized porcine embryos against oxidative stress induced apoptosis. Reprod. Dev. 2017; 63 (6): 581–590. DOI: 10.1262/jrd.2017-020.
  28. Kim E, Jeon Y, Kim DY, Lee E, Hyun SH. Antioxidative effect of carboxyethylgermanium sesquioxide (Ge-132) on IVM of porcine oocytes and subsequent embryonic development after parthenogenetic activation and IVF. Theriogenol. 2015; 84 (2): 226–236. DOI: 10.1016/j.theriogenol2015.03.006.
  29. Kondrasyi LA, Yakubchak ON, Maliuk NO, Kaplunenko VH. The quality variation of raw milk under preparation based on citrate Zn and Ge. Rep. NULES Ukraine. 2017; 3(67). DOI: 10.31548/dopovidi2017.03.019. (in Ukrainian)
  30. Kondratska OA, Grushka NG, Kaplunenko VG, Pavlovych SI, Sribna VO, Yanchii RI. Protective effect of germanium citrate in endotoxin-induced ovarian dysfunction in mice. Perspekt. 2018; 23 (1/1): 71–77. DOI: 10.26641/2307-0404.2018.1(part1).127240. (in Ukrainian)
  31. Kosinov MV, Kaplunenko VG. Method for metal carboxylates obtaining “Nanotechnology of obtaining metal carboxylates”. Patent of Ukraine no. 38391. publ. 12.01.2009. Bull. No 1, 2009 p. Available at: https://base.uipv.org/searchINV/search.php?action=viewdetails&IdClaim=128062 (in Ukrainian)
  32. Kotsjumbas G, Tesarivska U, Humenetska M, Shumska M. Hematological parameters and morphological characteristics of the spleen in female rats F1 under influence of nanohermanium citrate, used in different doses. Messenger LNU Vet. Med. Biotechnol. Ser. Vet. Sci. 2017; 19 (77): 45–50. DOI: 10.15421/nvlvet7711. (in Ukrainian)
  33. Kovalchuk II, Kykish IB, Kaplunenko VH. Influence of citrate microelements on the reproductive capacity of queen bees. Actual problems of natural sciences: modern scientific discussions. A collective monograph. Riga, Baltija Publishing, 2020: 87–110. DOI: 10.30525/978-9934-26-025-4-6. (in Ukrainian)
  34. Kresyun NV, Son HO, Godlevsky LS. The influence of niacin-oxietilyden-diphosphonate germanate and electrical stimulations of paleocerebellar cortex upon electroretinogram in rats with streptozotocin-induced diabetes. Biol. Med. 2018; 1: 4–8. Available at: http://biomed.odmu.edu.ua/?p=4741 (in Ukrainian)
  35. Kuldonashvili KV, Sheremeta VI, Kaplunenko VG. Nanoaquahelat germanium affect on the growth of piglets during the prenatal period. Breed. Genet. 2016; 51: 261–266. DOI: 10.31073/abg.51.35.
  36. Kuwabara M, Ohba S, Yukawa M. Effect of germanium, poly-trans-[2-carboxyethyl] germasesquioxane on natural killer (NK) activity in dogs. Vet. Med. Sci. 2002; 64 (8): 719–721. DOI: 10.1292/jvms.64.719.
  37. Lavriv PJ, Kravtsiv RJ, Avdosyeva IK. Role of nanopreparation hermacap in prophylactics of salmonellosis and heightening status at calves. Agricult. Sci. 2016; 11: 28–33. DOI: 10.31073/agrovisnyk201611-05.
  38. Lee JH, Kim KW, Yoon Y, Lee JY, Kim CJ, Sim SS. Anti-inflammatory effect of germanium-concentrated yeast against paw oedema is related to the inhibition of arachidonic acid release and prostaglandin E2 production in RBL 2H3 cells. Autacoid Pharmacol. 2005; 25 (4): 129–134. DOI: 10.1111/j.1474-8673.2005.00335.x.
  39. Lee JS, Park JI, Kim SH, Lee HY, Hwang ZZ, Park CB, Sohn TU, Shin S, Kang JK, Kim YB. Oral single- and repeated-dose toxicity studies on Geranti Bio-Ge yeast®, organic germanium fortified yeasts, in dogs. Toxicol. Sci. 2004; 29 (5): 555–569. DOI: 10.2131/jts.29.555.
  40. Lee JS, Park JI, Kim SH, Park SH, Kang SK, Park CB, Sohn TU, Jang JY, Kang JK, Kim YB. Oral single- and repeated-dose toxicity studies on Geranti Bio-Ge yeast®, organic germanium fortified yeasts, in rats. J Toxicol Sci. 2004; 29(5): 541–553. DOI: 10.2131/jts.29.541.
  41. Lee SH, Oh KN, Rho SN, Lee BH, Lee HJ. Oral repeated-dose toxicity studies especially in the liver and kidney of rats administered with organic Germanium-fortified yeasts. Nutr. Food Sci. 2006; 11 (2): 115–119. DOI: 10.3746/jfn.2006.11.2.115.
  42. Lee SH, Rho SN, Sohn TU. Efficacy study of activation on macrophage in germanium-fortified yeast. Korean Soc. Appl. Biol. Chem. 2005; 48 (3): 246–51. Available at: https://koreascience.kr/article/JAKO200508410620399.kr&sa=U.
  43. Lee WB, Kim IH, Hong JW, Kwon OS, Min BJ, Son GS, Jung YK. Effect of Protein level and dietary germanium biotite on egg production, egg quality and fecal volatile fatty acid in laying hens. Korean J. Poult. Sci. 2003; 30 (4): 275–280. Available at: https://koreascience.kr/article/JAKO20031587582823kr&sa=U
  44. Li L, Ruan T, Lyu Y, Wu B. Advances in effect of Germanium or germanium compounds on animals — a review. Biosci. Med. 2017; 5 (7): 56–73. DOI: 10.4236/jbm.2017.57006.
  45. Lin CH, Chen SS, Lin YC, Lee YS, Chen TJ. Germanium dioxide induces mitochondria-mediated apoptosis in Neuro-2A cells. Neurotoxicol. 2006; 27 (6): 1052–1063. DOI: 10.1016/neuro.2006.05.018.
  46. Litvinenko D, Kozyr V, Martsynko O. Search for potential antihypoxants among original heterometallic complexes of germanium and 3d-metals based on citric and tartaric acids. Drug toxicol. 2016; 6 (51): 60–65. Available at: http://nbuv.gov.ua/UJRN/flt_2016_6_9. (in Ukrainian)
  47. Liu CH, Yao FY, Sun FY, Jiang JL, Xiao C. Study on the inhibition effect of caffeic acid Germanium on the U14 tumor in mice and the cell apoptosis mechanisms. Heilongjiang Anim. Sci. Vet. Med. 2016; 11: 178–180. DOI: 10.13881/j.cnki.hljxmsy.2016.2122.
  48. Lukevics E, Gar TK, Ignatovich LM, Mironov VF. Biological Activity of Germanium Compounds. Riga: Zinatne. 1990: 191 p.
  49. Lukevics E, Ignatovich L. Biological activity of organogermanium compounds. Cheminform. 2003; 34 (45): 279–295. DOI: 10.1002/chin.200345272.
  50. Lukianchuk VD, Seifullina II, Martsinko OE, Shevchuk OO. Cerebroprotection by germanium coordination compounds in experimental acute global brain ischemia. J. Med. Med. Res. 2018; 4 (1): 60–66. DOI: 10.11603/ijmmr.2413-6077.2018.1.9253.
  51. Matyushkina MV, Godovan VV, Mudrik LM, Grydina TL. Antimicrobial properties of new coordination compounds of metals with citric acid. Odesa Med. J. 2014; 4: 13–17. Available at: http://journal.odmu.edu.ua/?p=2454. (in Ukrainian)
  52. Menchikov LG, Ignatenko MA. Biological activity of organogermanium compounds (a review). Chem. J. 2012; 46: 635–638. DOI: 10.1007/s11094-013-0860-2.
  53. Midula P, Wiche O, Wiese P, Andráš P. Concentration and bioavailability of toxic trace elements, germanium, and rare earth elements in contaminated areas of the Davidschacht dump-field in Freiberg (Saxony). Freiberg Ecol. Online. 2017; 1 (2): 101–112. Available at: https://tu-freiberg.de/sites/default/files/media/institut-fuer-biowissenschaften-10447/ag_biologie/FECO/feco_2_s101-112_midula_et_al_ree_ge_publ_09-04-2017.pdf
  54. Mulder P, Van Den Hoek AM, Kleemann R. The CCR2 inhibitor propagermanium attenuates diet-induced insulin resistance, adipose tissue inflammation and non-alcoholic steatohepatitis. PLoS ONE. 2017; 12 (1): e0169740. DOI: 10.1371/journal.pone.0169740.
  55. Mylostiva D. Influence of germanium citrate on the defensive antioxidative system of rats organism. Tech. Bull. State Sci. Res. Cont. Inst. Vet. Med. Prod. Fodder Add. Inst. Anim. Biol. 2017; 18 (2): 34–37. Available at: http://nbuv.gov.ua/UJRN/Ntbibt_2017_18_2_7 (in Ukrainian)
  56. Nagasawa T, Sato K, Kasumi T. Efficient alkaline isomerization of lactose to lactulose in the presence of an organogermanium compound. Appl. Glycosci. 2017; 64 (2): 27–32. DOI: 10.5458/jag.jag.JAG-2016_018.
  57. Nakamura T, Nagura T, Akiba M, Sato K, Tokuji Y, Ohnishi M, Osada K. Promotive effects of the dietary organic Germanium poly-trans-[(2-Carboxyethyl) Germasesquioxane] (Ge-132) on the secretion and antioxidative activity of bile in rodents. Health Sci. 2010; 56 (1): 72–80. DOI: 10.1248/jhs.56.72.
  58. Nakamura T, Nagura T, Sato K, Ohnishi M. Evaluation of the effects of dietary organic Germanium, Ge-132, and raffinose supplementation on caecal flora in rats. Microbiota Food Health. 2012; 31 (2): 37–45. DOI: 10.12938/bmfh.31.37.
  59. Nakamura T, Takeda T, Tokuji Y. The oral intake of organic germanium, Ge-132, elevates α-tocopherol levels in the plasma and modulates hepatic gene expression profiles to promote immune activation in mice. J. Vitam. Nutr. Res. Suppl. 2015; 84 (3–4): 183–195. DOI: 10.1024/0300-9831/a000205.
  60. Nefodova OO, Halperin OI, Shatorna VF. The influence of cerium and germanium citrates on the process of embryogenesis of rat on the background of cadmium intoxication. Probl. Biol. Med. 2019; 1 (1/148): 273–278. DOI: 10.29254/2077-4214-2019-1-1-148-273-278.
  61. Négrel P, Ladenberger A, Reimann C, Birke M, Sadeghi M. GEMAS: source, distribution patterns and geochemical behaviour of Ge in agricultural and grazing land soils at European continental scale. Geochem. 2016; 72: 113–124. DOI: 10.1016/j.apgeochem.2016.07.004.
  62. Nischemenko N, Kaplunenko V, Emelianenko A. Embryonic development of quails in the incubating eggs processing solution aquachelate germany. Bull. the Lviv Nat. Univer. Vet. Med. Biotechnol. S. Z. Gzhytsky. Ser. Vet. Sci. 2014; 16 (2/2): 258–264. Available at: http://nbuv.gov.ua/UJRN/nvlnu_2014_16_2%282%29__44. (in Ukrainian)
  63. Nizhenkovska I, Narokha V, Bakun A, Bruzgina T. Research of the influence of germanium coordination compounds with niacin and oxyethylidendiphosphonic acid on fatty acid composition of blood serum lipids. ScienceRise: Pharm. Sci. 2017; 1 (5): 32–35. DOI: 10.15587/2519-482017.91071. (in Ukrainian)
  64. Nizhenkovska I, Narokha V, Savosko S. The study of hepatoprotective properties of the complex of germanium with nicotinic acid in doxorubicin intoxication. Biopharm. J. 2015; 5 (40): 33–36. Available at: http://ir.librarynmu.com/handle/123456789/1517. (in Ukrainian)
  65. Oh C, Li M, Kim EH, Park JS, Lee JC, Ham SW. Cheminform abstract: antioxidant and radical scavenging activities of ascorbic acid derivatives conjugated with organogermanium. Cheminform. 2011; 42 (16): 3513–3514. DOI: 10.1002/chin.201116213.
  66. Pi J, Zeng J, Luo JJ, Yang PH, Cai JY. Synthesis and biological evaluation of Germanium(IV)-polyphenol complexes as potential anti-cancer agents. Med. Chem. Lett. 2013; 23 (10): 2902–2908. DOI: 10.1016/j.bmcl.2013.03.061.
  67. Ponomarenko OM, Samchuk AI, Vovk KV, Shvajka ID, Grodzynska GA. Germanium determination in environmental object by the method of mass spectrometry with inductively coupled plasma. Chem. J. 2019; 85 (4): 110–113. DOI: 10.33609/0041-6045.85.4.2019.110-113.
  68. Qu J. The biological functions of Germanium and its application in the poultry industry. Feed China. 2006; 9; 20–26.
  69. Rosenberg E. Germanium: environmental occurrence, importance and speciation. Environ. Sci. Bio/Technol. 2009; 8: 29. DOI: 10.1007/s11157-008-9143-x.
  70. Ruiz AG, Sola PC, Palmerola NM. Germanium: current and novel recovery processes. In: Lee S. (ed.). Advanced material and device applications with germanium. London, In Tech Open, 2018. DOI: 10.5772/intechopen.77997.
  71. Sabbioni E, Fortaner S, Bosisio S, Farina M, Del Torchio R, Edel J, Fischbach M. Metabolic fate of ultratrace levels of GeCl4 in the rat and in vitro studies on its basal cytotoxicity and carcinogenic potential in Balb/3T3 and HaCaT cell lines. Appl. Toxicol. 2010; 30 (1): 34–41. DOI: 10.1002/jat.1469.
  72. Sakhanda IV. Preparations of germanium and their use in medicine. Sci. Med. Youth J. 2014; 4 (84): 83–86. DOI: 10.32345/USMYJ.84.2014. (in Ukrainian)
  73. Seifullina II, Martsinko EE, Afanasenko EV. Design and synthesis of new homo- and heterometal coordination compounds of Germanium(IV) for preparation of low toxic drugs with a wide therapeutic action. Odesa Nat. Univer. Herald. Chem. 2015; 20 (4/56): 6–18. DOI: 10.18524/2304-0947.2015.4(56).56690.
  74. Seifullina II, Martsinko EE, Khristova NM, Chebanenko EA. Molecular complexes of germanium tetrachloride with niacin, nicotinic amide, isonicotinic hydrazide and their pharmacological actions. Odesa Nat. Univer. Herald. Chem. 2016; 21 (2/58): 18–28. DOI: 10.18524/2304-0947.2016.2(58).74777.
  75. Shatorna VF, Abramov SV, Sorokin VO, Davydenko IV, Chernilovskaya SV, Kopatskaya MV, Velikorodny VI. Liver morphogenesis under the influence of cadmium salts at the end of embryogenesis and in the postnatal period of development and search for possible ways to reduce the hepatotoxicity of cadmium in experiment. Probl. Biol. Med. 2021; 4 (162): 280–284. DOI: 10.29254/2077-4214-2021-4-162-280-284.
  76. Shatorna VF, Harets VI, Nefodova OO, Halperin OI, Deforzh GV, Gruzd VV. Experimental determination of the influence of citrates of metals to embryotoxicity of cadmium salts in embryogenesis of rats. World Med. Biol. 2019; 2 (68): 210–214. DOI: 10.26724/2079-8334-2019-2-68-210-214.
  77. Shimada Y, Sato K, Masaki M, Nakamura T, Tokuji Y. Quantitative assessment of the interactions between the organogermanium compound and saccharides using an NMR reporter molecule. Res. 2021; 499: 108199. DOI: 10.1016/j.carres.2020.108199.
  78. Shimada Y, Sato K, Takeda T, Tokuji Y. The organogermanium compound Ge-132 interacts with nucleic acid components and inhibits the catalysis of adenosine substrate by adenosine deaminase. Trace Element Res. 2018; 181 (1): 164–172. DOI: 10.1007/s12011-017-1020-4.
  79. Siwulski M, Budzyńska S, Rzymski P, Gąsecka M, Niedzielski P, Kalač P, Mleczek M. The effects of germanium and selenium on growth, metalloid accumulation and ergosterol content in mushrooms: experimental study in Pleurotus ostreatus and Ganoderma lucidum. Food Res. Technol. 2019; 245: 1799–1810. DOI: 10.1007/s00217-019-03299-9.
  80. Sobolev OI, Gutyj BV, Sobolieva SV, Borshch OO, Kushnir IM, Petryshak RA, Naumyuk OS, Kushnir VI, Petryshak OY, Zhelavskyi MM, Todoriuk VB, Sus HV, Levkivska ND, Vysotskij AO, Magrelo NV. A Review of germanium environmental distribution, migration and accumulation. J. Ecol. 2020; 10 (2): 200–208. DOI: 10.15421/2020_86
  81. Song C, Jing X. Advance in physical and chemical properties of Germanium and nutrition functions in animals. Chinese J. Anim. Sci. 2005; 41: 64–66.
  82. Stadnyk AM, Byts GO, Stadnyk OA. Biological role of germanium in animals and humans. Bull. the Lviv Nat. Univer. Vet. Med. Biotechnol. S. Z. Gzhytsky. 2006; 8 (2/1): 174–185. (in Ukrainian)
  83. Stoika RS. Multifunctional Nanomaterias for Biology and Medicine: Molecular Design, Synthesis and Application. Kyiv, Naukova dumka, 2017: 364 p. (in Ukrainian)
  84. Sutton J, Ellwood MJ, Maher WA, Croot PL. Oceanic distribution of inorganic germanium relative to silicon: Germanium discrimination by diatoms. Global Biogeochem. Cycl. 2010; 24 (2): 1–13. DOI: 10.1029/2009GB003689.
  85. Tan C, Xiao L, Chen W, Chen S. Germanium in ginseng is low and causes no sodium and water retention or renal toxicity in the diuretic-resistant rats. Biol. Med. 2015; 240 (11): 1505–1512. DOI: 10.1177/1535370215571874.
  86. Tattis A, Zupanets IA, Shebeko SK, Otrishko IA, Grintsov YF. Study of hepatoprotective properties of the “Altsinara” drug under conditions of acute hepatitis development in rats. Odesa Med. J. 2016; 5: 5–11. Available at: http://journal.odmu.edu.ua/?p=4493
  87. Tesarivska U. Ethological reactions in F2 weaning female and male rats influenced by different doses of germanium citrate. Tech. Bull. State Sci. Res. Cont. Inst. Vet. Med. Prod. Fodder Add. Inst. Anim. Biol. 2020; 21 (1): 228–234. DOI: 10.36359/scivp.2020-21-1.28. (in Ukrainian)
  88. Tesarivska U, Fedoruk R, Shumska M. Reproductive function of rat females and postnatal development of F1 and F2 offspring for the actions of different doses of nanogermanium citrate. Bull. the Lviv Nat. Univer. Vet. Med. Biotechnol. S. Z. Gzhytsky. Ser. Vet. Sci. 2016; 18 (3/71): 124–129. DOI: 10.15421/nvlvet7128.
  89. Tezuka T, Higashino A, Akiba M, Nakamura T. Organogermanium (Ge-132) suppresses activities of stress enzymes responsible for active oxygen species in monkey liver preparation. Enzyme Res. 2017; 5 (2): 13–23. DOI: 10.4236/aer.2017.52002.
  90. Velichko VA, Yakubchak ON, Kaplunenko VG, Avdosieva IK. The influence of Hermacap on the improvement of cows milk-raw indicators quality. Tech. Bull. State Sci. Res. Cont. Inst. Vet. Med. Prod. Fodder Add. Inst. Anim. Biol. 2017; 18 (2): 114–122. (in Ukrainian)
  91. Vlizlo V, Bashchenko M, Iskra R, Fedoruk R, Zhukorskyi O, Mezentseva L. Nanotechnologies and their application in animal husbandry and veterinary medicine. Agr. Sci. 2015; 93 (11): 5–9. DOI: 10.31073/agrovisnyk201511-01. (in Ukrainian)
  92. Vlizlo VV, Fedoruk RS, Iskra RJ. Biological effect of functional nanomaterials in various species of animals. Agr. Sci. 2018; 11: 80–86. DOI: 10.31073/agrovisnyk201811-11.
  93. Wada T, Hanyu T, Nozaki K, Kataoka K, Kawatani T, Asahi T, Sawamura Antioxidant activity of Ge-132, a synthetic organic germanium, on cultured mammalian cells. Biol. Pharm. Bull. 2018; 41 (5): 749–753. DOI: 10.1248/bpb.b17-00949.
  94. Wen P, Zhao XY, Ao Y, Qi GM, Liu ZY. The effect of two types of germanium compound on the production performance of meat chicken. Feed Rev. 2000; 4: 4–6.
  95. Wiche O, Székely B, Moschner C, Heilmeier H. Germanium in the soil-plant system — a review. Sci. Pollut. Res. Int. 2018; 25 (32): 31938–31956. DOI: 10.1007/s11356-018-3172-y.
  96. Yakubchak OM, Yermak AV. The influence of hermanium citrate on the indicators of quality and safety of natural honey. Rep. NULES Ukraine. 2019; 2 (78). DOI: 10.31548/dopovidi2019.02.019. (in Ukrainian)
  97. Yang F, Gong L, Jin H, Pi J, Bai H, Wang H, Cai H, Yang P, Cai J. Chrysin-organogermanium(IV) complex induced Colo205 cell apoptosis-associated mitochondrial function and anti-angiogenesis. Scanning. 2015; 37: 246–257. DOI: 10.1002/sca.21205.
  98. Yang F, Jin H, Pi J, Jiang JH, Liu L, Bai HH, Yang PH, Cai Anti-tumor activity evaluation of novel chrysin-organogermanium(IV) complex in MCF-7 cells. Bioorg. Med. Chem. Lett. 2013; 23 (20): 5544–5551. DOI: 10.1016/j.bmcl.2013.08.055.
  99. Yoshinari O, Shiojima Y, Igarashi K. Hepatoprotective effect of germanium-containing Spirulina in rats with D-galactosamine- and lipopolysaccharide-induced hepatitis. J. Nutr. 2013; 111 (1): 135–140. DOI: 10.1017/S0007114513001943.

Search